Skip to main content

Flow Pattern and Heat Transfer Rate in Three-Dimensional Rayleigh-Benard Convection

  • Conference paper
Recent Advances in Parallel Virtual Machine and Message Passing Interface (EuroPVM/MPI 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2840))

  • 759 Accesses

Abstract

The three-dimensional Rayleigh-Benard convection is simulated numerically using the lattice Boltzmann method. Parallel calculations are performed on a distributed shared-memory system. Flow patterns are observed in a rectangular box with an aspect ratio ranging from 2:2:1 to 6:6:1, and the heat transfer rate is estimated in terms of the Nusselt number. The dependency of the Nusselt number on the Rayleigh number is shown to agree well with that obtained by the two-dimensional calculations of the Navier-Stokes equations. It is found that several roll patterns are possible under the same condition and the heat transfer rate changes according to the flow pattern.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahlers, G.: Experiments with Pattern-Forming Systems. Physica D 51, 421 (1991)

    Article  MATH  Google Scholar 

  2. Cross, M.C., Hohenberg, P.C.: Pattern Formation Outside of Equilibrium. Rev. Mod. Phys. 65, 851 (1993)

    Article  Google Scholar 

  3. Pesch, W.: Complex Spatiotemporal Convection Patterns. CHAOS 6, 348 (1996)

    Article  Google Scholar 

  4. Mareschal, M., Kestemont, E.: Order and Fluctuations in Nonequilibrium Molecular Dynamics Simuations of Two-Dimensional Fluids. J. Stat. Phys. 48, 1187 (1987)

    Article  Google Scholar 

  5. Mareschal, M., Kestemont, E.: Experimental Evidence for Convective Rolls in Finite Two-Dimensional Moecular Models. Nature 239, 427 (1987)

    Article  Google Scholar 

  6. Rapaport, D.C.: Molecular-Dynamics Study of Rayleigh-Benard Convection. Phys. Rev. Lett. 60, 2480 (1988)

    Article  Google Scholar 

  7. Mareschal, M., Mansour, M.M., Puhl, A., Kestemont, E.: Molecular Dynamics versus Hydrodynamics in a Two-Dimensiona Rayleigh-Benrad System. Phys. Rev. Lett. 61, 2550 (1988)

    Article  Google Scholar 

  8. Puhl, A., Mansour, M.M., Mareschal, M.: Quantitative Comparison of Molecular Dynamics with Hydrodynamics in Rayleigh-Benard Convection. Phys. Rev. A 40, 1999 (1989)

    Article  Google Scholar 

  9. Given, J.A., Clementi, E.: Molecular Dynamics and Rayleigh-Benard Convection. J. Chem. Phys. 90, 7376 (1989)

    Article  Google Scholar 

  10. Watanabe, T., Kaburaki, H.: Increase in Chaotic Motions of Atoms in a Large-Scale Self- Organized Motion. Phys. Rev. E 54, 1504 (1996)

    Article  Google Scholar 

  11. Posch, H.A., Hoover, W.G., Kum, O.: Steady-State Shear Flows via Nonequilibrium Molecular Dynamics and Smooth-Particle Applied Mechanics. Phys. Rev. E 52, 1711 (1995)

    Article  Google Scholar 

  12. Kum, O., Hoover, W.G., Posch, H.A.: Viscous Conducting Flows with Smooth-Particle Applied Mechanics. Phys. Rev. E 52, 4899 (1995)

    Article  Google Scholar 

  13. Hoover, W.G., Kum, O.: Non-Equilibrium Simulations. Molec. Phys. 86, 685 (1995)

    Article  Google Scholar 

  14. Garcia, A.L.: Hydrodynamic Fluctuations and the Direct Simulation Monte Carlo Method. In: Mareschal, M. (ed.) Microscopic Simulations of Complex Flows, p. 177. Plenum Press, New York (1990)

    Google Scholar 

  15. Stefanov, S., Cercignani, C.: Monte Carlo Simulation of Benard’s Instability in a Rarefied Gas. Eur. J. Mech. B 11, 543 (1992)

    MATH  MathSciNet  Google Scholar 

  16. Garcia, A., Penland, C.: Fluctuating Hydrodynamics and Principal Oscillation Patter Analysis. J. Stat. Phys. 64, 1121 (1991)

    Article  Google Scholar 

  17. Watanabe, T., Kaburaki, H., Yokokawa, M.: Simulation of a Two-Dimensional Rayleigh- Benard System using the Direct Simulation Monte Carlo Method. Phys. Rev. E 49, 4060 (1994)

    Article  Google Scholar 

  18. Watanabe, T., Kaburaki, H., Yokokawa, M.: Reply to Comment on Simulation of a Two- Dimensional Rayleigh-Benard System using the Direct Simulation Monte Carlo Method. Phys. Rev. E 51, 3786 (1995)

    Article  Google Scholar 

  19. Watanabe, T., Kaburaki, H., Machida, M., Yokokawa, M.: Growth of Long-Range Correlations in a Transition Between Heat Conduction and Convection. Phys. Rev. E 52, 1601 (1995)

    Article  Google Scholar 

  20. Watanabe, T., Kaburaki, H.: Particle Simulation of Three-Dimensional Convection Patterns in a Rayleigh-Benard System. Phys. Rev. E 56, 1218 (1997)

    Article  Google Scholar 

  21. Stefanov, S., Roussinov, V., Cercignani, C.: Rayleigh-Benard Flow of a Rarefied Gas and its Attractors.I. Convection Regime. Phys. Fluids 14, 2255 (2002)

    Article  MathSciNet  Google Scholar 

  22. Stefanov, S., Roussinov, V., Cercignani, C.: Rayleigh-Benard Flow of a Rarefied Gas and its Attractors. II. Chaotic and Periodic Convective Regimes. Phys. Fluids 14, 2270 (2002)

    Article  MathSciNet  Google Scholar 

  23. Shan, X.: Simulation of Rayleigh-Benard Convection using a Lattice Boltzmann Method. Phys. Rev. E 55, 2780 (1997)

    Article  Google Scholar 

  24. He, X., Chen, S., Doolen, G.D.: A Novel Thermal Model for the Lattice Boltzmann Method in Incompressible Limit. J. Comp. Phys. 146, 282 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  25. Palmer, B.J., Rector, D.R.: Lattice Boltzmann Algorithm for Simulating Thermal Flow in Compressible Fluids. J. Comp. Phys. 161, 1 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  26. Bhatnagar, P.L., Gross, E.P., Krook, M.: A Model for Collision Processes in Gases, I: Small Amplitude Processes in Charged and Neutral One-Component System. Phys. Rev. 94, 511 (1954)

    Article  MATH  Google Scholar 

  27. Zou, Q., He, X.: On Pressure and Velocity Boundary Conditions for the Lattice Boltzmann BGK Model. Phys. Fluids 9, 1591 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  28. Fromm, J.E.: Numerical Solutions of the Nonlinear Equations for a Heated Fluid Layer. Phys. Fluids 8, 1757 (1965)

    Article  Google Scholar 

  29. Clever, R.M., Busse, F.H.: Transition to Time-Dependent Convection. J. Fluid Mech. 65, 625 (1974)

    Article  MATH  Google Scholar 

  30. Chandrasekhar, S.: Hydrodynamic and Hydromagnetic Stability. Oxford University Press, Oxford (1961)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Watanabe, T. (2003). Flow Pattern and Heat Transfer Rate in Three-Dimensional Rayleigh-Benard Convection. In: Dongarra, J., Laforenza, D., Orlando, S. (eds) Recent Advances in Parallel Virtual Machine and Message Passing Interface. EuroPVM/MPI 2003. Lecture Notes in Computer Science, vol 2840. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39924-7_66

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-39924-7_66

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20149-6

  • Online ISBN: 978-3-540-39924-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics