Skip to main content

On the RS-Code Construction of Ring Signature Schemes and a Threshold Setting of RST

  • Conference paper
Information and Communications Security (ICICS 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2836))

Included in the following conference series:

  • 828 Accesses

Abstract

We propose a Reed-Solomon (RS) code construction of the 1-out-n (ring) signature scheme. It is obtained from the observation of the equivalency between the erasure correction technique of the RS code and the polynomial interpolation. The structure is very simple and yields a ring equation that can appropriately denoted by Z 1 + ... + Z n =v, which represents the summation of n evaluations of a polynomial. We also show how to extend the generic RST scheme [6] to a t-out-n threshold ring signature scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abe, M., Ohkubo, M., Suzuki, K.: 1-out-of-n signatures from a variety of keys. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 415–432. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  2. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols. In: Proc. 1st ACM Conference on Computer and Communications Security, pp. 62–73. ACM Press, New York (1993)

    Chapter  Google Scholar 

  3. Bresson, E., Stern, J., Szydlo, M.: Threshold ring signatures for ad-hoc groups. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 465–480. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  4. Cramer, R., Damgård, I., Schoenmakers, B.: Proofs of partial knowledge and simplified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994)

    Google Scholar 

  5. Reed, I.S., Solomon, G.: Polynomial codes over certain finite fields. SIAM J. Applied Math. 8, 300–304 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  6. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  7. Wei, V.K.: Modulation, Coding and Cryptography: Theory, Algorithms and Source programs. Draft (1998)

    Google Scholar 

  8. Zhang, F., Kim, K.: ID-Based blind signature and ring signature from pairings. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 533–547. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wong, D.S., Fung, K., Liu, J.K., Wei, V.K. (2003). On the RS-Code Construction of Ring Signature Schemes and a Threshold Setting of RST. In: Qing, S., Gollmann, D., Zhou, J. (eds) Information and Communications Security. ICICS 2003. Lecture Notes in Computer Science, vol 2836. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39927-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-39927-8_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20150-2

  • Online ISBN: 978-3-540-39927-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics