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Abstract. This paper1 presents the Kell calculus, a new distributed process cal-
culus that retains the original insights of the Seal calculus (local actions, process
replication) and of the M-calculus (higher-order processes and programmable
membranes), although in a much simpler setting than the latter. The calculus is
equipped with a type system that enforces a unicity property for location names
that is crucial for the efficient implementation of the calculus.

1 Introduction

Numerous distributed process calculi have been introduced in the past ten years. One
of the calculi that has received the most attention has been Mobile Ambients [5], as
witnessed by the numerous variants that have been proposed to overcome some of
its perceived deficiencies: Safe Ambients (SA) [11], Safe Ambients with passwords
[12], Boxed Ambients (BA) [3], Controlled Ambients (CA) [16], New Boxed Ambi-
ents (NBA) [4], Ambients with process migration (M3) [7].

Mobile Ambients are unfortunately costly to implement in a distributed setting (i.e.
with ambients representing potentially widely separated sites), in particular because
of the synchronization implied in its migration primitives. Consider the reduction rule
associated with the in primitive of Mobile Ambients:

n[inm.P | Q] | m[R] → m[R | n[P | Q]]

This rule mandates a rendez-vous between ambient n and ambient m. Thus, if ambient
n and ambient m are taken to represent two remote sites, a faithful implementation of
this rule would require some form of distributed synchronization.

The difficulty of implementing Mobile Ambients in a distributed setting and the
need for two and even three-way-synchronization between ambients to implement Am-
bient migration primitives, has been made clear by two implementation attempts. The
first one, reported in [9], implements the original Mobile Ambients calculus using (an
implementation of) the Distributed Join calculus. The second one, reported in [13], de-
scribes a Safe Ambients abstract machine, called PAN, that alleviates some of the dif-
ficulty inherent in Mobile Ambients implementation by implementing a variant of the
original calculus with co-capabilities and single-threadedness [11], but where ambients
no longer correspond to physical loci of computations.

1 This work has been supported in part by the Mikado project – IST-2001-32222.
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Recent variants of Ambients, such as Boxed Ambients (BA) and New Boxed Am-
bients (NBA) propose a model which combines local communication across location
boundaries (inspired by the Seal calculus [17]), and the Ambient migration primitives
in and out. In a model such as NBA, communication can be implemented efficiently
while migration primitives still imply in general a distributed rendez-vous. This is much
preferrable to the original Mobile Ambients, but still raises a number of questions.

First, one can think of turning the Ambient migration primitives into asynchronous
ones. This would be useful to take into account the possibility of failure for migration,
especially in wide-area settings. To illustrate, one could think of splitting the Mobile
Ambients in primitive into a pair of primitives move and enter whose behavior
would be given by the following reduction rules (we use co-capabilities and passwords,
as in the NBA calculus):

n[move〈m, h〉.P | Q] | move(x, y).R → enter〈n, m, h, P, Q〉 | R{m/x, h/y}

enter〈n, m, h, P, Q〉 | m[enter(x, h).S | T ] → m[S{x/n} | T | n[P | Q]]

In so doing, note that migration primitives now look very much like higher-order com-
munication across location boundaries. Second, one may envisage further extensions
allowing more sophisticated authentication schemes, or dynamic security checks (e.g.
additional parameters for proof-carrying code schemes). This in turn would further
strengthen the similarity between migration primitives and higher-order communica-
tion. Third, there are still pending questions concerning migration primitives and their
combination. For instance, should we go for communications à la Boxed Ambients or
should we consider instead to split up the migration primitives such as to migration
primitive in the M3 calculus, yielding a form of communication similar to Dπ [10] or
Nomadic Pict [18], where communication is a side-effect of process migration ? Should
we allow for more objective forms of migration to reflect control that ambients can ex-
ercize on their content ?

Our answer to these questions is to move away from the Ambient primitives alto-
gether, and instead to follow the lead of higher-order process calculi such as Dλπ [19]
and the M-calculus [14], where process migration is a side-effect of higher-order com-
munication. Indeed, as demonstrated in the M-calculus, higher-order communication,
coupled with programmable localities, provides the means to model different forms of
migration protocols, and different forms of locality semantics. The M-calculus avoids
embedding predefined choices concerning migration primitives and their interplay. In-
stead, these choices can be defined, within the calculus itself, by programming the ap-
propriate behavior in locality “membranes” (the control part P of an M-calculus local-
ity a(P )[Q]). The M-calculus, however, may appear as rather complex, especially with
respect to Mobile Ambients. The reduction relation of the calculus, which defines its
operational semantics, contains several so-called routing rules that govern the crossing
of location boundaries. Clearly it would be interesting to explain these different rules
as instances of basic primitive “boundary crossing” cases.

The calculus we introduce in this paper is an attempt to define a calculus with pro-
cess migration and hierarchical localities, that avoids the need for distributed synchro-
nization, while preserving the simplicity of Mobile Ambients, and retaining the basic
insights of the M-calculus: migration as higher-order communication, programmable
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membranes for localities. We call this new calculus the Kell calculus (the word “kell”
is a variation on the word “cell”, and denotes a locality or locus of computation).

Avoiding primitives with implied distributed synchronization is not the only re-
quirement for an efficient implementation in a distributed setting. Today’s wide-area
communication is predicated upon the existence of globally unique identifiers and ad-
dresses (e.g. IP addresses). It is therefore important, in a calculus intended as a foun-
dation for wide-area distributed programming, to be able to enforce such a constraint,
both for modelling and implementation purposes. In the Kell calculus, the unicity of
addresses translates into the unicity of locality (kell) names. We show in the paper how
to enforce the constraint by means of a polymorphic type system, inspired by the type
system defined for the M-calculus.

The Kell calculus and its reduction semantics has already been introduced in [15],
together with faithful encodings of Mobile Ambients and of the Distributed Join calcu-
lus. We present in this paper a variant of the Kell calculus with join patterns which is a
more natural fit for the type system, together with a new reduction semantics.

The paper is organized as follows. Section 2 informally introduces the main con-
structs of the Kell calculus, together with several examples. Section 3 gives the syntax
and operational semantics of the calculus. Section 4 defines a type system for the Kell
calculus that enforces the unicity of kell name property. Section 5 concludes the paper
with a discussion of related work and of directions for future research.

2 Introducing the Kell Calculus

The Kell calculus is in fact a family of calculi that share the same constructs and that
differ only in the language of message patterns used in triggers (see below). In this
section, we present informally the different constructs of the Kell calculus variant we
use in this paper.

The core of the calculus is the asynchronous higher-order π-calculus. Among the
basic constructs of the calculus we thus find:

– the null process, 0; names a, x, which also play the roles of (name and process)
variables;

– the restriction, νa.P , where a is a name, P is an arbitrary Kell calculus process,
and ν is a binding operator;

– the parallel composition, P | Q;
– messages of the form, a〈w̃〉, where a is a name, and where w̃ is a (possibly empty)

vector of elements w that can be either names or processes.
– triggers, or receivers, of the form ξ �P , where ξ is a receipt pattern and P is an

arbitrary kell calculus process.

The patterns used in this paper correspond to an extension of the Join patterns, i.e.
patterns of messages used in the Join calculus:

ξ ::= J | J | a[x] J ::= a〈ũ〉 | a〈ũ〉↑ | a〈ũ〉↓ | J | J

where ũ is a vector of elements u. Each element u can be either a (bound) variable x, or
a free name, which we note (x). Variables are bound in patterns and their scope extends
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to the process of the right-hand side of the trigger sign �. Free names (x) are not bound
in the pattern.

To this higher-order π-calculus core, we add just one construct, the kell construct,
a[P ], which is used to localize the execution of a process P at location (we say “kell”)
a.

In the Kell calculus, computing actions can take four simple forms, illustrated be-
low:
1. Receipt of a local message, as in the reduction below, where a message, a〈Q〉,

on port a, bearing the process Q, is received by the trigger a〈x〉 � P (notice that
triggers, as in the Join calculus, are replicated, i.e. they persist after a reaction):

a〈Q〉 | (a〈x〉 � P ) → (a〈x〉� P ) | P{Q/x}

2. Receipt of a message originated from the environment of a kell, as in the reduction
below, where a message, a〈Q〉, on port a, bearing the process Q, is received by
the trigger a〈x〉 � P , located in kell b (the pattern a〈x〉↑ indicates that a message is
expected from outside the local kell):

a〈Q〉 | b[a〈x〉↑ � P ] → b[(a〈x〉↑ � P ) | P{Q/x}]

3. Receipt of a message originated from a sub-kell, as in the reduction below, where
a message, a〈Q〉, on port a, bearing the process Q, and coming from sub-kell b,
is received by the trigger a〈x〉 � P , located in the parent kell of kell b (the pattern
a〈x〉↓ indicates that a message is expected from a kell inside the local kell):

(a〈x〉↓ � P ) | b[a〈Q〉 | R] → (a〈x〉↓ � P ) | P{Q/x} | b[R]

4. Suspension of a kell, as in the reduction below, where the sub-kell named a is
destroyed, and the process Q it contains is sent in a message on port b:

a[Q] | (a[x] � b〈x〉) → (a[x] � b〈x〉) | b〈Q〉

Actions of the form 1 above are standard π-calculus actions. Actions of the form 2
and 3 are just extensions of the message receipt action of the π-calculus to the case of
triggers located inside a kell. They can be compared to the communication actions in
Boxed Ambients or in the Seal calculus [6].

Actions in the Kell calculus obey a locality principle that states that any computing
action should involve only one locality at a time (and its environment, when considering
crossing locality boundaries). In particular, notice that there are no reductions in the
calculus that, similar to the Mobile Ambients in move, would involve two adjacent
kells. In particular, we do not have reductions of the following form:

a[in〈Q〉] | b[in〈x〉 � x] → a[0] | b[(in〈x〉 � x) | Q]

Actions of the form 4 are characteristic of the Kell calculus. They allow the envi-
ronment of a kell to exercize control over the execution of the process located inside a
kell. They can be compared to the migrate and replicate construct of the Seal calculus,
but note that they provide more control over the execution of processes. Consider for
instance the processes P and R defined as:

P
∆
= suspend〈(a)〉 | a[x] � a〈x〉 R

∆
= resume〈(a)〉 | a〈x〉� a[x]
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We have the following reductions:

resume〈a〉 | suspend〈a〉 | P | R | a[Q] → resume〈a〉 | P | R | a〈Q〉
→ P | R | a[Q]

In this example, the environment of kell a first suspends its execution (there is no
evaluation under a a〈.〉 context), and then resumes it (processes can execute under a a[.]
context).

The higher-order nature of the calculus, together with the above control capability,
allows the definition of different forms of programmable “membranes” around kells.
For instance, a membrane around a[K] can take the form: c[M(a) | a[K]], in which
case its behavior is defined by the process M(a). Here are some simple examples of
membranes (we assume that all messages to kell a have the form rcv〈a, op, args〉 and
that all messages from kell a have the form snd〈b, op, args〉):
Transparent Membrane. This is a membrane that does nothing (it just allows mes-

sages destined to, or emitted by, a to be transmitted without any control):

Mtrans
∆
= (rcv〈(a), b, x〉↑ �rcv〈a, b, x〉) | (snd〈b, c, x〉↓ � snd〈b, c, x〉)

Intercepting Membrane. This is a membrane that triggers behaviour P (x) when a
message a〈x〉 seeks to enter kell a, and behaviour Q(b, y) when a message m〈b, y〉
seeks to leave kell a. Notice how this allows the definition of wrappers with pre and
post-handling of messages:

Mint
∆
= (rcv〈(a), b, x〉↑ � Pre〈b, x〉) | (snd〈b, c, x〉↓ � Post〈b, c, x〉)

Migration Membrane. This is a membrane that allows new processes to enter kell a
via the enter operation, and allows kell a to move to a different kell b via the
go operation. Compare these operations with the asynchronous Ambient migra-
tion primitives enter and move given in Section 1, and the go primitive of the
Distributed Join calculus:

Mmig
∆
= Mtrans | (rcv〈(a), (enter), x〉↑ � (a[y] � a[x | y]))

| (go〈b〉↓ � (a[y] �snd〈b,enter, a[y]〉))
Membrane with Fail-Stop Failures. This is a membrane that allows to stop the ex-

ecution of locality a (simulating a failure in a fail-stop model), and that implements
a simple failure detector via the ping operation. Compare these operations with
the π1l-calculus [1], or the Distributed Join calculus, model of failures:

Mfails
∆
= νc f.Mtrans | c | (stop〈(a)〉↑ | c � (a[y] � f))

| (rcv〈(a), (ping), r〉↑ | c � snd〈r,up, a〉)
| (rcv〈(a), (ping), r〉↑ | f � snd〈r,down, a〉)

Membrane with Fail-Stop Failures and Recovery. This is a membrane that extends
the previous one with the possibility of recovery:

Mfailr
∆
= νc f.Mtrans | c | (stop〈(a)〉↑ | c � (a[y] � f〈y〉))

| (rcv〈(a), (ping), r〉↑ | c � snd〈r,up, a〉)
| (rcv〈(a), (ping), r〉↑ | f〈y〉 � snd〈r,down, a〉)
| (rcv〈(a), (recover), r〉↑ | f〈y〉 � a[y] | c | snd〈r,rcvd, a〉)
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3 The Kell Calculus: Syntax and Operational Semantics

3.1 Syntax

The syntax of the Kell calculus, together with the syntax of evaluation contexts, is given
below:

P ::= 0 | x | ξ � P | νa.P | P | P | a[P ] | a〈P̃ 〉
ξ ::= ⊥ | J | J | a[x]

J ::= a〈ũ〉∗ | J | J

u ::= x | (x)

∗ ::= − | ↑ | ↓
E ::= · | νa.E | a[E] | P | E

Filling the hole · in an evaluation context E with a Kell calculus term Q results in a
Kell calculus term noted E{Q}.

We assume an infinite set N of names. We let a, b, x, y and their decorated vari-
ants range over N. Note that names in the kell calculus act both as name constants and
as (name or process) variables. We use Ṽ to denote finite vectors (V1, . . . , Vq). Abus-
ing the notation, we equate Ṽ = (V1, . . . , Vn) with the word V1 . . . Vn and the set
{V1, . . . , Vn}. We note |Ṽ | the length n of a vector Ṽ = (V1, . . . , Vn).

Terms in the Kell calculus grammar are called processes. We note K the set of
Kell calculus processes. We let P , Q, R, S, T and their decorated variants range over
processes. We call message a process of the form a〈P̃ 〉. We let M, N and their decorated
variants range over messages and parallel composition of messages. We abbreviate a a
message of the form a〈〉 (i.e. a message with an empty vector of arguments). We call
kell a process of the form a[P ]. The name a in a kell a[P ] is called the name of the kell.
In a kell of the form a[. . . | aj [Pj ] | . . . | Qk | . . .] we call subkells the processes aj [Pj ].
We call trigger a process of the form ξ � P , where ξ is a receipt pattern (or pattern, for
short). A pattern can be a join pattern J , or a control pattern of the form J | a[x], in
which the join pattern J may be empty (i.e. J = ⊥). The empty join pattern, ⊥, cannot
match any message. We note a〈ũ〉 for a〈ũ〉−.

In a term νa.P , the scope extends as far to the right as possible. In a term ξ �P , the
scope of � extends as far to the left and to the right as possible. Thus, a〈c〉 | b[y] �P |
Q stands for (a〈c〉 | b[y]) �(P | Q). We use standard abbreviations from the the π-
calculus: νa1 . . . aq.P for νa1. . . . νaq.P , or νã.P if ã = (a1 . . . aq). By convention,

if the name vector ã is empty, then νã.P
∆= P . We also note

∏

i∈I Pi, I = {1, . . . , n}
the parallel composition (P1 | (. . . (Pn−1 | Pn) . . .)). By convention, if I = ∅, then
∏

i∈I Pi
∆= 0.

A pattern ξ acts as a binder in the calculus. All names x that do not occur within
parenthesis () in a pattern ξ are bound by the pattern. We call pattern variables (or
variables, for short) such bound names in a pattern. Variables occurring in a pattern
are supposed to be linear, i.e. there is only one occurrence of each variable in a given
pattern. Names occurring in a pattern ξ under parenthesis (i.e. occurrences of the form
(x) in ξ) are not bound in the pattern. We call free pattern names (or free names, for
short), names occurring under () in a pattern. The other binder in the calculus is the ν
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operator, which corresponds to the restriction operator of the π-calculus. Free names
(fn), receiver names (rn), bound pattern variables (bn) and free pattern names (mn)
are defined below:

fn(0) = ∅ fn(x) = {x}
fn(νx.P ) = fn(P ) \ {x} fn(P | Q) = fn(P ) ∪ fn(Q)
fn(x[P ]) = fn(P ) ∪ {x} fn(J) = rn(J) ∪ mn(J)
fn(J � P ) = (fn(P ) \ bn(J)) ∪ fn(J)
fn(x〈P1, . . . , Pn〉) = fn(P1) ∪ . . . ∪ fn(Pn) ∪ {x}
fn(J | y[x] � P ) = (fn(P ) \ bn(J) \ {x}) ∪ {y} ∪ fn(J)

rn(a〈ũ〉) = a rn(J | J ′) = rn(J) ∪ rn(J ′)
bn(a〈ũ〉) = N ∩ ũ bn(J | J ′) = bn(J) ∪ bn(J ′)
mn(a〈ũ〉) = {x ∈ N | (x) ∈ ũ} mn(J | J ′) = mn(J) ∪ mn(J ′)

We call substitution a function θ : N → N � K from names to names and Kell
calculus processes that is the identity except on a finite set of names. We write Pθ the
image under the substitution θ of process P . We note Θ the set of substitutions, and
supp the support of a substitution (i.e. supp(θ) = {i ∈ N | θ(i) �= i}).

Let J be a join pattern, and θ be a substitution such that bn(J) ⊆ supp(θ). We
define the image Jθ of J under substitution θ as cj(J)θ, where cj is the function
defined inductively as:

cj(a) = a cj((a)) = a cj(⊥) = 0

cj(a〈w̃〉) = a〈c̃j(w)〉 cj(a〈w̃〉↓) = a〈c̃j(w)〉
cj(a〈w̃〉↑) = a〈c̃j(w)〉 cj(J | J ′) = cj(J) | cj(J ′)

We note P =α Q when two terms P and Q are α-convertible.
Formally, with the syntax presented, the reduction rules in section 3.2 could yield

terms of the form P [Q], which are not legal Kell calculus terms (i.e. the syntax does not
distinguish between names playing the role of name variables, and names playing the
role of process variables). The type system presented in Section 4 rules out such illegal
terms.

3.2 Reduction Semantics

The operational semantics of the Kell calculus is defined in the CHAM style [2], via a
structural equivalence relation and a reduction relation. The structural equivalence ≡ is
the smallest equivalence relation that verifies the rules in Figure 1 and that makes the
parallel operator | associative and commutative, with 0 as a neutral element.

Notice that we do not have structural equivalence rules that deal with scope extru-
sion beyond a kell boundary (i.e we do not have the Mobile Ambient rule a[νb.P ] ≡
νb.a[P ], provided b �= a). As in the Seal calculus, this is to avoid phenomena as illus-
trated below:

(a[x] � x | x) | a[νb.P ] → (νb.P ) | (νb.P ) (a[x] � x | x) | νb.a[P ] → νb.P | P

The reduction relation → is the smallest binary relation on K2 that satisfies the rules
given in Figure 2, where we assume that bn(J) = supp(θ). Some comments are
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νa.0 ≡ 0 [S.NU.NIL] νa.νb.P ≡ νb.νa.P [S.NU.COMM]

a 
∈ fn(Q)

(νa.P ) | Q ≡ νa.P | Q
[S.NU.PAR]

P =α Q

P ≡ Q
[S.α]

P ≡ Q

E{P} ≡ E{Q} [S.CONTEXT]

Fig. 1. Structural equivalence.

J = J1 | J2 J1 =
∏

j∈J

aj〈w̃j〉↑ 
= ⊥ fn(J1θ) ∩ c̃ = ∅

J1θ | b[νc̃.R | J2θ | (J � Q)] → b[νc̃.R | Qθ | (J � Q)]
[R.IN]

d̃ = c̃ \ ẽ ẽ = c̃ ∩ fn(J1θ)

ẽ ∩ fn(J � Q, J2θ, b) = ∅ J = J1 | J2 J1 =
∏

j∈J

aj〈w̃j〉↓ 
= ⊥

J2θ | (J � Q) | b[νc̃.R | J1θ] → νẽ.Qθ | (J � Q) | b[νd̃.R]
[R.OUT]

Jθ | a[P ] | (J | a[x] � Q) → Qθ{P/x} | (J | a[x] � Q) [R.PASS]

J 
= ⊥
Jθ | (J � Q) → Qθ | (J � Q)

[R.LOCAL]
P → Q

E{P} → E{Q} [R.CONTEXT]

P ′ ≡ P P → Q Q ≡ Q′

P ′ → Q′ [R.STRUCT]

Fig. 2. Reduction Relation.

in order. Rules R.IN an R.OUT take into account the presence of restrictions inside
kells, since restricted names cannot be automatically extruded out of kells through the
structural equivalence. Rule R.OUT explicitly extrudes restricted names that are com-
municated outside a kell boundary. Note that names that are not communicated are not
extruded. Rules R.IN and R.OUT govern the crossing of kell boundaries. Note that only
messages may cross a kell boundary. In rule R.IN, a trigger receives messages from the
local environment as well as from the outside of the enclosing kell. In rule R.OUT, a
trigger receives messages from the local environment as well as from a subkell. Rule
R.PASS allows the passivation of a subkell, possibly upon receipt of messages from
the local environment. In rules R.IN and R.OUT, note that the join pattern J2 may be
empty. Likewise, in rule R.PASS, the join pattern J may be empty.

4 Type System

As pointed out in the introduction, the unicity of kell names is an important property to
enforce in order to ensure an efficient implementation of the calculus. For instance, a
kell a modelling a computing site interconnected via a wide-area network such as the
Internet would have triggers of the form rcv〈(a), (b), x̃〉 | . . . � P with a corresponding
e.g. to a wide-area network address. In this setting, the name a must be unique, at
least within the context of the enclosing environment (which models the behavior of
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the network). Enforcing the unicity of kell names, however, is difficult in presence of
higher-order communication and kell passivation. For instance, assume that a trigger
twice〈x〉 � x | x is defined. Then a trigger of the form a[x] �twice〈a[x]〉 would lead
to the illicit duplication of kell a.

We present in this section a type system for the kell calculus that enforces the unicity
of kell names. More precisely, the type system enforces the unicity of active kells. A kell
a[Q] is said to be active in P (and P is said to contain the active kell a) if P = E{a[Q]}
and a[Q] is not under a scope restriction for a. The general idea, borrowed from the M-
calculus type system, is to define the type of a process P as a multiset ∆ that represents
an upper bound on the multiset of names of kells that may be or may become active in
P . Intuitively, a process will therefore be well-typed if its type ∆ ends up being a set.

The syntax of types is given below:

σ ::= kell(w)∆→∆′ | 〈σ̃〉∆ | 〈σ̃〉+∆ | ∆

∆ ::= ∅ | ρ | δ | a | ∆, ∆

w ::= a | δ | ∅
s ::= ∀ρ̃δ̃.σ

A type σ can be a process type ∆, a kell name type kell(w)∆→∆′ , a channel type
〈σ̃〉∆, or a sendable channel type 〈σ̃〉+∆. A channel of type 〈σ̃〉∆ can receive messages
with arguments of types σ̃, and the receipt of messages on this channel leads to the
creation of kells with names in ∆. A sendable channel type types a receiver variable
that can be instantiated to a just received name. We note 〈σ̃〉(+)

∆ to denote a type that
can be a channel type 〈σ̃〉∆ or a sendable channel type 〈σ̃〉+∆.

An active kell name a, which hosts subkells whose names are in ∆, and whose pas-
sivation leads to the creation of kells whose names are in ∆′, has type kell(a)∆→∆′ .
This is because a kell name can be used both as the name of an active kell and as the
name of a special channel used to passivate the kell of the same name (via rule R.PASS).
Since kell names are also variables, one must allow name type variables δ as argument
of kell name types. No kell name may have type kell(∅)∆→∆′ (these types are intro-
duced for technical reasons).

We use ∀ρ̃δ̃.σ to denote a type scheme in which name type variables δ̃ and multiset
variables ρ̃ are generalized. To define the type system, we consider an extended syntax
for the calculus where new names are annotated with their type scheme. Thus we write
νa : s.P instead of νa.P , where s is a type scheme. The notion of free names is
modified to take into account the new syntax: fn(νy : s.P ) = fn(P, s) \ {y}. The
structural congruence rules S.NU.NIL, S.NU.COMM and S.NU.PAR are modified thus:

S.NU.NIL νa : s.0 ≡ 0
S.NU.COMM νa : s.νb : s′.P ≡ νb : s′.νa : s.P if a 
∈ fn(s′) and b 
∈ fn(s)
S.NU.PAR νa : s.P | Q ≡ (νa : s.P ) | Q if a 
∈ fn(Q)

Multisets ∆ can include names a, name type variables δ, and multiset variables ρ. We
use several operations on multisets. Relation ⊆ is the standard multiset inclusion. ∆, ∆′

is the union of multisets ∆ and ∆′. Multiset ∆ \ a is the multiset ∆ minus a single oc-
currence of name a. ∆�∆′ is the smallest multiset (in terms of inclusion) that contains
both ∆ and ∆′.
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We define the subtyping relation ≤ (where σ̃ and σ̃′ are vectors of the same length
n), which is the smallest reflexive relation obeying the rules below:

∆ ≤ ∆′ ⇐ ∆ ⊆ ∆′

〈σ̃〉∆ ≤ 〈σ̃′〉∆′ ⇐ ∀i ∈ {1, . . . , n}, σ′
i ≤ σi ∧ ∆ ⊆ ∆′

〈σ̃〉+∆ ≤ 〈σ̃′〉∆′ ⇐ ∀i ∈ {1, . . . , n}, σ′
i ≤ σi ∧ ∆ ⊆ ∆′

kell(w1)∆1→∆2 ≤ kell(w2)∆′
1→∆′

2
⇐ w1 = w2 ∧ ∆′

1 ⊆ ∆1 ∧ ∆2 ⊆ ∆′
2

The intuition behind the subtyping relation is that it is safe (with respect to the unicity
of kell names) to replace a process with a process that contains fewer active kells.

We use Γ and its decorated variants to denote type environments, i.e. finite map-
pings between names and type schemes. We define the set of free names and of free
type variables below:

fn(∅) = ∅ fv(∅) = ∅
fn(ρ) = ∅ fv(ρ) = {ρ}
fn(δ) = ∅ fv(δ) = {δ}
fn(a) = a fv(a) = ∅
fn(∆, ∆′) = fn(∆) ∪ fn(∆′) fv(∆, ∆′) = fv(∆) ∪ fv(∆′)
fn(kell(w)∆→∆′) = fn(w) ∪ fn(∆, ∆′) fv(kell(w)∆→∆′) = fv(w) ∪ fv(∆, ∆′)
fn(〈σ̃〉(+)

∆ )=fn(σ1) ∪. . .∪ fn(σn) ∪ fn(∆) fv(〈σ̃〉(+)
∆ )=fv(σ1) ∪. . .∪ fv(σn) ∪ fv(∆)

fn(∀β̃.σ) = fn(σ) fv(∀β̃σ) = fv(σ) \ β̃
fn(Γ ) = ∪x∈dom(Γ )fn(Γ (x)) fv(Γ ) = ∪x∈dom(Γ )fv(Γ (x))

Type judgments take the following form: Γ � P : σ, where Γ is an environment, P
is a process, and σ is a type. The type system is defined by the rules in Figure 3. They
make use of the Inst operator, that takes a type scheme and returns a type where the
generalized name type variables and multiset variables have been instantiated to names
and multisets, respectively. A type environment Γ is said to a be good if fn(Γ ) = {x ∈
dom(Γ ) | Γ (x) = ∀β̃.kell(x)∆→∆′}.

The typing rules use auxiliary functions which we now define. To deal with sendable
receivers, we introduce a partition of the set of names, N: we define a set V such that
V ⊆ N. If a ∈ V, then a must be of type sendable. This is formalized in the definition
of predicate Pred below. Assume that (ai, ∀β̃i.〈σ1..mi

i 〉∆i) ∈ Γ and J = a1〈u1..m1
1j 〉 |

. . . | an〈u1..mn

nj 〉. We define the function Extract by:

Extract(Γ, J) = {xij : σij | xij ∈ bn(J)}
We define the predicate Pred by:

Pred(Γ, J) = ∀i, i′ ∈ {1..n}.∀j ∈ {1..mi}.∀j′ ∈ {1..mi′}
(xij , xi′j′ ∈ mn(J) ∧ (xij = xi′j′)) =⇒ σij = σi′j′

∧ ∀i ∈ {1..n}.∀j ∈ {1..mi}.xij ∈ mn(J) =⇒ (σij 
= ∆)

∧ ∀i ∈ {1..n}.fv(Γ ) ∩ β̃i = ∅
∧ ∀i, j ∈ {1..n}.i 
= j =⇒ β̃i ∩ β̃j = ∅
∧ ∀x ∈ bn(J), x ∈ V

∧ ai ∈ V =⇒ (ai, 〈σ1..mi
i 〉+∆i

) ∈ Γ
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Γ good (x, s = ∀β̃.σ) ∈ Γ, σθ = Inst(s) fn(ran(θ)) ⊆ fn(Γ )

Γ � x : σθ
[T.VAR]

Γ good
Γ � 0 : ∅ [T.NIL]

Γ � P1 : ∆1 Γ � P2 : ∆2

Γ � P1 | P2 : ∆1, ∆2
[T.PAR]

s = ∀β̃.〈σ̃〉∆ ∨ s = 〈σ̃〉+∆
fv(s) = ∅ Γ, r : s � P : ∆′ fn(s) ⊆ fn(Γ )

Γ � νr : s.P : ∆′ [T.CHAN.KELL]

s = ∀β̃.kell(a)ρ→∆′ fv(s) = ∅ ρ /∈ ∆′ − ρ
Γ, a : s � P : ∆, a /∈ ∆ − a fn(∆′) ⊆ fn(Γ ) ∪ {a} a /∈ fn(Γ )

Γ � νa : s.P : ∆ − a
[T.CHAN]

Γ � P : ∆0 Γ � a : kell(w)∆→∆′ ∆0 ≤ ∆

Γ � a[P ] : (w, ∆0) � ∆′ [T.KELL]

Γ � a : 〈σ̃〉(+)
∆ Γ � Pi : σ′

i σ′
i ≤ σi

Γ � a〈P̃ 〉 : ∆
[T.MSG]

J = a1〈u1..m1
1j 〉∗ | . . . | an〈u1..mn

nj 〉∗
Γ ′ = Extract(Γ, J) Pred(Γ, J)

(ai,∀β̃i.〈σ1..mi
i 〉(+)

∆i
) ∈ Γ Γ, Γ ′ � P : ∆ ∆ ≤ ∆1, . . . , ∆n

Γ � ai : 〈τ 1..mi
i 〉(+)

∆′
i

∀xij ∈ mn(J).Γ � xij : τ ′
ij τ ′

ij ≤ τij

Γ � J � P : ∅ [T.TRIG.MSG]

J = a1〈u1..m1
1j 〉∗ | . . . | an〈u1..mn

nj 〉∗
Γ ′ = Extract(Γ, J) Pred′(Γ, J, a) (a,∀β̃.kell(w)∆→∆0) ∈ Γ

(ai,∀β̃i.〈σ1..mi
i 〉(+)

∆i
) ∈ Γ Γ, Γ ′, x : ∆ � P : ∆′ ∆′ ≤ ∆0, . . . , ∆n

Γ � ai : 〈τ 1..mi
i 〉(+)

∆′
i

∀xij ∈ mn(J).Γ � xij : τ ′
ij τ ′

ij ≤ τij

Γ � J | a[x] � P : ∅ [T.TRIG.PASS]

Fig. 3. Typing rules.

Assume now that (a, ∀β̃.kell(w)∆→∆0 ) ∈ Γ . We define the predicate Pred′ by:

Pred′(Γ, J, a) = Pred(Γ, J) ∧ (fv(Γ ) ∩ β̃ = ∅) ∧ (a 
∈ V)

Some comments on these typing rules are in order. In rule T.MSG, the type of
channel a is in fact a type scheme. The condition Γ � a : 〈σ̃〉∆ provides an instance
of this type scheme. Rule T.MSG requires arguments Pi of a message on channel a
to have types which are subtypes of the expected argument types. Because of rules
T.TRIG.MSG and T.TRIG.PASS, a trigger always has type ∅ (a trigger does not exhibit
any active kell). The premises in both rules deal with the two sorts of names in a join
pattern (variables and free names). In the case of a free name a (which occurs as (a)
in the pattern), one must ensure that it is identically typed in all of its occurrences (first
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clause in the definition of Pred), and that its type is not a process type (condition
σij �= ∆ in the second clause of the definition of Pred). Note that the part of the
premises that deals with free names is actually similar to the premises in rule T.MSG,
since T.MSG only deals with free names and processes. Typing rules T.TRIG.MSG and
T.TRIG.PASS may seem complex but they are in fact very close to the typing rule for
Join calculus definitions: the guarded process is typed in an environment extended with
formal parameters, and the result is checked to create fewer kells than advertised by
the channel types. Every defined channel name that is a variable is checked to have
a sendable channel type in the environment. The additional hypotheses check that the
type schemes associated with channels (and the passivated kell name in T.TRIG.PASS)
are consistent with the typing environment: no generalized variable may occur free in
the environment, nor be shared by two channels (or a channel and the passivated kell
name in T.TRIG.PASS).

The soundness of the type system is characterized by the following definitions and
theorems, where a good type environment Γ is said to be well-formed if all pairs in Γ

are of one of the following forms: x : 〈σ̃〉+∆, x : ∀β̃.〈σ̃〉∆, or x : ∀β̃.kell(x)ρ→∆ with
ρ �∈ ∆ − ρ. A process P is said to have failed if P = E{Q}, with Q containing two
active localities bearing the same name. A process P is said to be faulty if P →∗ Q
with Q failed.

Theorem 1. If Γ � P : σ with Γ well-formed, and P ≡ Q, then Γ � Q : σ.

Theorem 2 (Subject Reduction). If Γ � P : σ with Γ well-formed, and P → Q, then
there exists σ′ such that σ′ ≤ σ and Γ � Q : σ′.

Theorem 3 (Progress). If Γ � P : ∆ with Γ well-formed, and ∆ is a set containing
only kell names, then the process P is not faulty.

We now discuss some features and limitations of the type system. Note first that,
because of the constraint a �∈ V in the definition of predicate Pred′, an expression such
as a〈y〉 �(y[x] � P ) is not typable. In other terms, one cannot instantiate a kell name with
a received name. Like the type system of the M-calculus defined in [14] from which it
is inspired, our type system simulates dependent types using polymorphism and name
type variables (type variables that represent kell names), since kell names may occur in
types. Consider now some simple examples. The process (a〈y〉 � b[y]) | a〈0〉 | a〈0〉 is
faulty, since in the environment Γ = a : ∀ρ.〈ρ〉b,ρ, b : ∀ρ′.dom(b)ρ′→∅, we get the
type judgment Γ � (a〈y〉 � b[y]) | a〈0〉 | a〈0〉 : b, b. This is an example of a process
which is correctly flagged as faulty by our type system. As another example, the process
a〈y〉 | b〈z〉 � y | z is correct (non-faulty) and is indeed typable: with the environment
Γ = a : ∀ρ.〈ρ〉ρ, b : ∀ρ′.〈ρ′〉ρ′ , we get Γ � a〈y〉 | b〈z〉 � y | z : ∅. On the other
hand, consider the process T = a〈y〉 � (νt : 〈〉∅.(t | b〈z〉 � y | z) | t). This process is
correct since it does not duplicate kells it receives (it just instantiates a process received
on a once). However this process is not typable with our type system. Indeed, the type
system is too coarse in that respect since it deals with process T in the same way than
with process S = a〈y〉 � (b〈z〉 � y | z), which is indeed faulty since it may lead to an
indefinite replication of active kell names received in the y argument. It is not clear how
this limitation can be lifted.
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5 Conclusion

We have introduced the Kell calculus, a new process calculus with hierarchical local-
ities, strictly local actions, higher-order communication and locality passivation. Like
the M-calculus, the Kell calculus allows an encoding of different forms of locality mem-
branes, including localities with different forms of failures. The Kell calculus, however,
appears simpler than the M-calculus, and does not rely on complex routing rules in
contrast to the M-calculus.

The Kell calculus shares the local character of its actions with the Seal calculus [6].
Indeed, as in the Seal calculus, primitive actions in our calculus include local commu-
nications and communications across a single locality boundary. In contrast to Seal,
however, our communications are higher-order, whereas Seal distinguishes between
first-order communications on the one hand and migrating and replicating localities
on the other hand. The choice in Seal to eschew higher-order communication was made
primarily with a view to simplify its underlying theory. However, as the results in [6]
reveal, the higher-order character of the migrate and replicate primitives in Seal already
poses some problems (e.g. with respect to a complete characterization of contextual
equivalence). With the Kell calculus higher-order pirmitives, we gain the ability to han-
dle directly passivated process states. This allows for instance a direct modelling of such
failure behaviors as fail-stop with recovery, a behaviour which would be less straight-
forward to model in Seal (seals can be replicated and destroyed but they cannot be
passivated and reactivated; it is possible to place Seals in opaque membranes to simu-
late passivation but this is not entirely satisfactory since one can allow observation of
passivated states – e.g. in the form of checkpoints). Another perceived advantage of
the higher-order character of the Kell calculus over Seal is the potential to extend the
calculus with multi-stage programming along e.g. the lines of MetaKlaim [8].

The type system we introduced for the Kell calculus is directly inspired by the M-
calculus type system [14]. Because the calculus is simpler, with less constructs, the
resulting type system is also simpler. Whether the two type systems are comparable
(notably with respect to the amount of correct processes they fail to type) is unclear,
however. In particular, it is not clear whether a typed encoding of the M-calculus in the
Kell calculus would yield a similar type system for the M-calculus as the original one.

To the best of our knowledge, the dual use which is made in the Kell calculus of
the locality construct a[P ], both as a locus for computation and as a handle for control-
ling the execution of a located process, is new. The examples provided in this paper,
together with the encodings of Mobile Ambients and of the Distributed Join calculus
given in [15], show that a single (higher-order) objective passivation construct is suffi-
cient to capture the variety of subjective migration primitives which have been proposed
recently, in ambient calculi and other distributed process calculi. At the same time, this
construct is powerful enough to model different forms of failures, including fail-stop
failures with recovery, an important requirement for practical distributed programming.

Much work remains to be done, however, to assess the foundational character of
the calculus with respect to distributed programming. The following issues seem worth
considering:
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– Developing a bisimulation theory for the Kell calculus. A characterization of con-
textual equivalence by means of a higher-order bisimulation seems highly non-
trivial because of the passivation construct.

– Developing type systems for the Kell calculus. Numerous type systems have been
developed for mobile Ambients and their variants. It would be interesting to transfer
these results to the Kell calculus (in particular the ones dealing with resource and
security constraints).

– Introducing the possibility to share processes among different kells. If one consid-
ers a kell (or locality) not only as a locus of computation but also as a compo-
nent, sharing among kells appears as an important practical requirement. However,
sharing raises considerable difficulties, which are very much related to the aliasing
problem in object-oriented programming.
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