Abstract
Abstract simplicial complexes are used in many application contexts to represent multi-dimensional, possibly non-manifold and non-uniformly dimensional, geometric objects. In this paper we introduce a new general yet compact data structure for representing simplicial complexes, which is based on a decomposition approach that we have presented in our previous work [3]. We compare our data structure with the existing ones and we discuss in which respect it performs better than others.
Chapter PDF
Similar content being viewed by others
References
Brisson, E.: Representing geometric structures in d dimensions: Topology and order. In: Proceedings 5th ACM Symposium on Computational Geometry, June 1989, pp. 218–227. ACM Press, New York (1989)
De Floriani, L., Magillo, P., Puppo, E., Sobrero, D.: A multi-resolution topological representation for non-manifold meshes. In: Proceedings 7th ACM Symposium on Solid Modeling and Applications (SM 2002), Saarbrucken, Germany, June 17-21, pp. 159–170 (2002)
De Floriani, L., Mesmoudi, M.M., Puppo, E., Morando, F.: Non-manifold decomposition in arbitrary dimensions. In: Braquelaire, A., Lachaud, J.-O., Vialard, A. (eds.) DGCI 2002. LNCS, vol. 2301, pp. 69–80. Springer, Heidelberg (2002); Extended version to appear in Graphical Models
De Floriani, L., Morando, F., Puppo, E.: Representation of non-manifold objects through decomposition into nearly manifold parts. In: Shapiro, V., Elber, G. (eds.) Proceedings 8th ACM Symposium on Solid Modeling and Applications, Seattle, WA, June 16-20, pp. 304–309. ACM Press, New York (2003)
Edelsbrunner, H.: Algorithms in combinatorial geometry. In: Brauer, W., Rozenberg, G., Salomaa, A. (eds.) EATCS Monographs on Theoretical Computer Science. Springer, Heidelberg (1987)
Elter, H., Lienhardt, P.: Cellular complexes as structured semi-simplicial sets. International Journal of Shape Modeling 1(2), 191–217 (1994)
Glaser, L.C.: Geometric combinatorial Topology. Van Nostrand Reinhold, New York (1970)
Gursoz, E.L., Choi, Y., Prinz, F.B.: Vertex-based representation of nonmanifold boundaries. In: Wozny, M.J., Turner, J.U., Preiss, K. (eds.) Geometric Modeling for Product Engineering, pp. 107–130. Elsevier Science Publishers B.V., North Holland (1990)
Kovalevsky, V.A.: Finite topology as applied to image analysis. Computer Vision, Graphics, and Image Processing 46(2), 141–161 (1989)
Weiler, K.: The radial edge data structure: A topological representation for nonmanifold geometric boundary modeling. In: McLaughlin, H.W., Encarnacao, J.L., Wozny, M.J. (eds.) Geometric Modeling for CAD Applications, pp. 3–36. Elsevier Science Publishers B.V., North–Holland (1988)
Lee, S.H., Lee, K.: Partial entity structure: a fast and compact non-manifold boundary representation based on partial topological entities. In: Proceedings Sixth ACM Symposium on Solid Modeling and Applications. Ann Arbor, Michigan (June 2001)
Lienhardt, P.: Topological models for boundary representation: a comparison with n-dimensional generalized maps. CAD 23(1), 59–82 (1991)
Mantyla, M.: An Introduction to Solid Modeling. Computer Science Press, Rockville (1983)
Morando, F.: Decomposition and Modeling in the Non-Manifold domain. PhD thesis (February 2003)
Paoluzzi, A., Bernardini, F., Cattani, C., Ferrucci, V.: Dimension-independent modeling with simplicial complexes. ACM Transactions on Graphics 12(1), 56–102 (1993)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
De Floriani, L., Morando, F., Puppo, E. (2003). A Representation for Abstract Simplicial Complexes: An Analysis and a Comparison. In: Nyström, I., Sanniti di Baja, G., Svensson, S. (eds) Discrete Geometry for Computer Imagery. DGCI 2003. Lecture Notes in Computer Science, vol 2886. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39966-7_43
Download citation
DOI: https://doi.org/10.1007/978-3-540-39966-7_43
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-20499-2
Online ISBN: 978-3-540-39966-7
eBook Packages: Springer Book Archive