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Abstract. Abstract simplicial complexes are used in many application
contexts to represent multi-dimensional, possibly non-manifold and non-
uniformly dimensional, geometric objects. In this paper we introduce a
new general yet compact data structure for representing simplicial com-
plexes, which is based on a decomposition approach that we have pre-
sented in our previous work [3]. We compare our data structure with the
existing ones and we discuss in which respect it performs better than
others.
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1 Introduction

Geometric cell complexes are widely used to represent multi-dimensional geo-
metric objects in many applications. In particular, simplicial complexes have
received great attention both from a theoretical and from a practical point of
view. In fact, their combinatorial properties make them easier to understand,
represent and manipulate than more general cell complexes.

A data structure representing a complex should not only describe its shape
unambiguously, but should also support efficient traversal and editing opera-
tions [13].

Although most work in the geometric modeling literature has been aimed
at representing just three-dimensional manifold objects, several authors have
pointed out the need of developing more general data structures, which can rep-
resent also higher dimensional and/or non-manifold and non-uniformly dimen-
sional objects [8,15,10]. Non-manifold singularities in modeled objects occurs as
a side-effect of feature extraction from images, 3D reconstruction or as a byprod-
uct of severe discretization. Sometimes singularities are actually essential when,
for instance, we choose to model the semantic content of an image (e.g. [9]) with
an object of mixed dimensionality. This generality is usually paid in terms of
some overhead in storage costs. On the other hand, most objects encountered in
the applications contain a relatively small number of non-manifold singularities.
Thus, it is important to develop data structures that are not burdened by an
excessive overhead, when they are used to represent manifold objects, i.e., they
scale well with the degree of “non-manifoldness”.
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In this paper, we first review several data structures available from the liter-
ature for non-manifold modeling.

Next, we describe a two-level data structure that we call Non-Manifold De-
composition Data Strucutre (NMD-DS). The NMD-DS can represent any sim-
plicial complex in any dimension and downscales well to the manifold case. This
data structure is based on a scheme for decomposing non-manifold complexes
into nearly manifold parts, that we presented in [3]. A complex is decomposed in
a unique way into a reduced number of components such that each component
is as free as possible from singularities.

Each decomposition component belongs to a well-understood class of com-
plexes, that we called initial quasi-manifolds. Such complexes are simple enough
to be represented with a data structure, having a cost comparable to those used
for representing manifolds. We call this data structure the Initial Quasi Mani-
fold Data Structure (IQM-DS). This data structure was introduced in [4] and is
detailed here in Section 5.1.

The collection of representations of components constitutes the first level
of our data structure. The assembly of all components is represented in the
second level, which is designed to support efficient traversal of the complex across
different components.

2 Background

Purely geometrical aspects are not relevant in the design of data structures
because geometric embedding is always encoded by adding just coordinates to
vertices. Therefore, we will address only abstract complexes, by focusing on their
combinatorial structure and on the topological relations among their cells.

Abstract Simplicial Complexes. Let V' be a finite set of elements that we
call vertices. An abstract simplicial complexr on V is a subset {2 of the set of
(non empty) subsets of V' such that: {v} € 2 for every vertex v € V; and if
v C V is an element of (2, then every subset of ~ is also an element of (2. Each
element of (2 is called an abstract simplex, or just a simplex. The dimension of
a simplex v € (2, denoted dim(7), is the number of vertices in v minus one. A
cell of dimension s is called an s-cell. A complex 2 is called d-dimensional or
a d-compler if max,ecqo(dim(y)) = d. Each d-cell of a d-complex {2 is called a
maximal cell of £2.

The set of all cells of dimension smaller or equal to m is called the m-skeleton
of 2 (denoted by 2™). The set of all simplices of dimension m will be denoted
by 20" Tt is easy to see that £2 is a subcomplex of £ and 2™ is not.

The boundary 0 of a cell «y is defined to be the set of all proper subsets of
~. Cells € in 0 are called faces of 7. Similarly, the co-boundary or star of a cell
v is defined as xy = {£ € 2 | v C &}. Cells € in *v are called co-faces of v. Any
cell v such that vy = {7} is called a top cell of 2.

Two distinct cells are said to be incident if and only if one of them is a face
of the other. Two simplices are called s-adjacent if and only if they share an



456 Leila De Floriani, Franco Morando, and Enrico Puppo

s-face. In particular, two p-simplices, with p > 0, are said to be adjacent if they
are (p—1)-adjacent. Two vertices are called adjacent if and only if they are both
incident at a common 1-cell. The link of a cell v, denoted by lk(7), is the set of
all faces of co-faces of ~, that are neither incident at, nor adjacent to ~.

A h-path is a sequence of simplices (%-)fzo such that two consecutive simplices
in the sequence v;_1 ; are h-adjacent. Two simplices v and v’ are h-connected
if and only if there exist a h-path such that v is a face of 7y and +/ is a face of
k. A subset 2 of a complex (2 is called h-connected iff every pair of its vertices
are h-connected.

Classes of Complexes. A d-complex {2 in which every non-maximal simplex
is a face of some maximal simplex is regular or uniformly d-dimensional.

A s-simplex 7 in a d-complex, with 0 < s < d — 1, is a manifold simplex if
and only if its link is combinatorially equivalent either to a (d — s — 1)-sphere, or
to a (d — s — 1)-ball [7]. If v is not a manifold simplex, it is called a singularity.

A regular (d—1)-connected d-complex where all (d—1)-simplices are manifold
is called a combinatorial pseudomanifold. A regular d-complex where all vertices
are manifold is called a combinatorial d-manifold. In a combinatorial manifold
all simplices are manifold.

Topological Relations. Let 7 be a p-simplex in a d-complex {2, with 0 <
p < d. For each integer value ¢, 0 < g < d, we define the topological relation
Ry () as aretrieval function that returns g-cells of £2. Whenever p < ¢ function
Rpq(y) returns the set of simplices of dimension ¢ that contains «. Similarly,
for p > ¢, function R, () returns the set of simplices of dimension ¢ that
are contained in 7. Relation R,,, for p > 0 is defined using R, for ¢ < p,
as Rpp(7) = Uvey Rip—1)p(v — {v}), ie., Rpp(7y) gives all p-simplices which are
(p — 1)-adjacent to . Similarly, Roo(v) = Ueery, (v)1€ — {v}}, ie., Roo(v) gives
all 0-simplices which share a 1-simplex with v.

3 Related Work

Several data structures for manifolds can encode partially the non-manifold do-
main using simplicial and cell complexes.

Dimension-independent data structures have been proposed for d-dimensional
manifold complexes, which include the Cell Tuple (CT) [1], the n-G-map (nGM)
[12] for cellular complexes, and the Indezed data structure with Adjacencies (IA)
for simplicial complexes (which directly extends to arbitrary dimension, being
called winged representation in [15]).

If the TA is used to encode a simplicial d complex 2(d 4 1) references are
needed for each d-simplex. If either CTs or n-G-maps are used to describe just
simplicial complexes, they require (d + 1)!(d + 1) references for each d-simplex.
This represent a storage cost much bigger than that of IA, for a factor that grows
combinatorially with the dimension of the complex.
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The representation domain of all such data structures actually extends be-
yond the class of d-manifolds. The TA, altough extremely compact, can only
describe Euclidean pseudomanifolds embedded in the Euclidean d-dimensional
space. The n-G-maps describes a larger sub-class of pseudomanifolds introduced
in [12], called cellular quasi-manifolds. The representation domain of CT is sim-
ilar to that of n-G-maps (see [1] for details). However, none of them can encode
completely the non-manifold domain.

A data structure for encoding any two-dimensional simplicial complex, called
the triangle-segment (TS) data structure, has been proposed in [2]. The TS ex-
tends the TA to deal with non-manifoldness. This data structure is quite com-
pact, since it requires at most 4n,; additional references with respect to the IA,
where ng; denotes the number of top simplices incident to a non-manifold vertex.
Moreover, the TS data structure downscale to IA in the manifold case.

Data structures for non-manifold, non-regular three-dimensional cell com-
plexes have been proposed for modeling non-manifold solids. They are basically
all variants of the Radial-Edge (RE) data structure [10]. The RE encodes any
3-cell implicitly through the manifold 2-complex partitioning its boundary. A
face can be shared by at most two 3-cells. More compact versions of the RE,
namely the Tri-cyclic Cusps (TCC) data structure ([8] and the Partial Entity
(PE) data structure [11], have been proposed more recently. To give an idea of
storage costs for these data strucutres we can compute the number of references
necessary to encode a simplicial 3-complex by using such data structures. Let
v, e, f, t be, respectively, the number of 0-, 1-, 2- and 3-cells/simplices in the
non-manifold solid. Then, the RE uses 155t + 2f + e + v references, the TCC
uses 94t + f + e 4+ v references and finally storage requirements for PE reduces
to 27t + 19f + 2e + v references. Experimental evaluations reported in [11] show
that these data structures do not downscale well to the manifold case, i.e. they
are extremely inefficient when used to encode manifolds.

In summary, we can conclude that data structures that fully models non-
manifold solids do not downscales well to the manifold case. The data structure
NMD-DS, presented in this paper, downscales effectively its storage requirements
when going into the manifold domain. Still NMD-DS can encode a generic, possi-
bly non-manifold, abstract simplicial d-complex. Of course, there are alternative
ways for implementing abstract simplicial complexes, though not efficient. For
instance simplicial sets, close to simplicial complexes, can be implemented as
variants of incidence graphs [5], and chains of maps [6].

4 The Standard Decomposition

In this section, we summarize the results of previous work [3,14], in which we
proposed a sound decomposition of non-manifold complexes.

We say that a decomposition 2’ is an essential decomposition of (2 if and
only if all simplices of {2’ that must be pasted together to produce §2 are glued
at some singularity (non-manifold face) of 2.

The decompositions in Figures 1c and 1d are examples of essential decompo-
sitions for the complex of Figure la. The decompositions in Figures 1b and le
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Fig. 1. A 2-complex with a non-manifold edge (having three incident triangles) and a
non-manifold vertex V' marked in bold (a); four possible decompositions of the com-
plex (b).

are non-essential decompositions. The decomposition in Figure le is a manifold
complex, but is not essential because we split along a manifold edge (marked in
bold).

We consider essential decompositions as the only candidates, and we define
the standard decomposition V{2 as the most decomposed essential decompo-
sition. It can be proven [14] that the standard decomposition exists, and it is
unique and it is the decomposition that is obtained by cutting the complex {2
along all its non-manifold faces. For instance, the complex of Figure 1d is the
standard decomposition of the complex in la. In [3], we have also presented an
algorithm that computes the standard decomposition V{2 in O(d!tlogt) where
t is the number of maximal simplices in the d-complex {2. This decomposition
algorithm produces a map, we will denote with o, that maps back vertices in
V{2 into their original vertex in 2 (i.e. 0(V§2) = 2). An example of the o map
associated with a standard decomposition is presented in Figure 3.

The standard decomposition is a complex formed of regular connected com-
ponents, and each of its components belong to a class of complexes, that we
called initial quasi-manifolds, which admit the local characterization.

A regular h-complex (2 is an initial quasi-manifold if and only if we can
always traverse the maximal h-simplices in the star of each vertex through man-
ifold (h —1)-faces (see [3] for the formal definition of initial quasi-manifolds). In
this case we say that the star of each vertex is manifold-connected. This charac-
terization is relevant to the design of data structures, as we will see in the next
sections.

The class of initial quasi-manifolds coincides with that of manifolds in dimen-
sion d < 2, while in higher dimension (d > 3) there are initial quasi-manifolds
which are non-manifold, and it also is possible to build examples of initial quasi-
manifolds that are not even pseudomanifolds [14].

5 The Non-manifold Data Structure (NMD-DS)

In this section, we present a data structure, that we call NMD-DS, to encode
non-manifold d-complexes according to their decomposition. The data struc-
ture contains a lower level, which encodes separately each initial quasi-manifold
component obtained from decomposition; and an upper layer, which encodes
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information necessary to traverse different components through (non-manifold)
joints. The lower level is based on a data structure, we called the Initial Quasi
Manifold Data Struture (IQM-DS) to encode initial quasi-manifolds that we
sketched already in [4]. Next, in order to extract all topological relations effi-
ciently , we add to this two level data structure a set of d partial relations, each
denoted by VT, for 0 < i < d. Partial relation VT will give, for each i-simplex
v, an h-simplex that is incident to . Proofs about claims and analyses of space
and time complexity are omitted for brevity. All proofs can be found in [14].

5.1 The Initial Quasi Manifold Data Structure (IQM-DS)

Let {2 be a h-dimensional initial quasi-manifold simplicial complex, with i > 0,
we represent (2 with a data structure that extends the indexed data structure
with adjacencies [15]. In the original TA, a complex is represented encoding
relations Rjpo and Rp;, assuming that the encoded complex is a pseudomanifold.
We extend this data structure to accomodate non-pseudomanifold situations
where the set Rpp(€) has two or more h-simplices. Let £ be a non-manifold
(h — 1)-face, and let 7,...,7x—1 be the h-simplices incident at . Then for
1 =0...k—1, in the adjacency list of ~;, at the entry corresponding to &, we
encode a link t0 Y(j41)moak- This allows us to visit cells incident at £ in cyclic
order, thus supporting efficient retrieval of the complete relation Ry, for all such
cells.

In Figure 2b we report references for the Rog and the Roo relations in the
adjiacency data structure for the 2-complex in Figure 2a. As in the original TA
symbol | is used to mean "no adjacency”. Note that in the tables for these
two relations we adopt the usual consistency rules in ordering the two lists of
links encoding Rsg and Ra, for a given triangle ¢, i.e.: the adjacency at a given
position ¢ in the list of Rgs corresponds to the edge of ¢ which is opposite to the
vertex at the same position i in the list of Ryg.

It is easy to see that, using this data strucure, we can encode Ryo and Rpp,
relations using 2(h+1) references for each h-simplex. Moreover through a suitable
renumbering of vertices and top cells, we may obtain that a vertex indexed by w;,
for i > h, is always incident at a top h-cell indexed by ¢(;_p) (i.e. w; € Rpo(t(i—p))
for i > h).

This renumbering allows us to maintain the V07T implicitly. Furthermore, by
imposing Rpo(t1) = {w1, ..., wny1}, and by exploiting w; € Rpo(t;—p)) fori > h
we can encode part of the Ry relation implicitly saving v references. This reduce
storage cost for the three relations Ry, Rp, and VOT relations 2fy,(h + 1) — v,
where f, is the number of h-simplices. The table in Figure 2, for instance, is
built by using this numbering scheme (i.e. w3 is in t1, wy is in t etc.).

Such a data structure is sufficient to retrieve all topological relations for an
initial quasi-manifold h-complex. Vertex based relations Ry, for (h—2) < m <
h, can be computed in O(|Ryp,,|) whenever the given abstract simplicial complex
is imbeddable in R”. In particular we can compute in linear time all vertex bases
topological relations Ry, in for 2 and 3 complexes embeddable in R3.
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Fig. 2. References for the Ry and the Rao relations in the IA for the 2-complex on
the left.
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Fig. 3. A 3-complex (a) and its standard decomposition (b). Edge uv splits into uiv;
and uovs and the star of usvs is not manifold connected.

5.2 A Data Structure to Connect Components

We now assume that each component of V{2 obtained from the decomposition
algorithm is encoded with the IQM-DS data structure described in the previous
subsection. In order to build a data structure for the original complex {2, we
add to this data structure the encoding of the map o. Recall that the map o
is computed by the the decomposition process (See Section 4) and is such that
o(V2) = 0.

Consider for instance for the complex of Figure 3a whose standard decom-
position is in Figure 3b. The maps o and o~ ! for this complex are shown in
Figure 3c.

The encoding of V{2 together with maps o and o~ ! is sufficient to extract
all topological relations.

However, more complex relations are necessary to ensure more efficient traver-
sal. To this aim, we introduce partial relation ov. This relation is defined for all
simplices v € 2 such that « is either a splitting simplex or a simplex whose star
is not (h—1)-connected. When = is a splitting simplex, oy relates v with the set
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of simplices into which ~ is split (they are called copies of ). Figure 3¢ reports
the map oy for the complex of Figure 3a. Note that edge uv splits into the two
copies uyvy and ugve and the star of usvy is not manifold-connected in V2.

The encoding of components of V{2 together with the encoding of o, o ~! and
oy is sufficient to compute efficiently all topological relations R,q(7v) provided
that, we can supply a top simplex 6 incident to v. We will denote with R,,(~|0)
this computation (reads R,,(7y) given 6). If we assume logarithmic access time
to the maps o, 0! and oy then R,,(7]f) can be computed, for a d-complex {2
imbeddable in RY, in O(|Rpq(7)| + logng) for all (d —3) < p < q < d, where
ngt is the total number of top simplices incident to non-manifold vertices. This
means that, for d = 2 and d = 3, under the above assumptions, all topological
relations R,,(7]0) are computed in O(|Rpq(7y)| + logng,).

Adding an encoding of relations VPT we can provide a top simplex # incident
to a generic p-simplex . We assume that access to relation VPT can be done in
O(log |2IP)]) (recall that £2[P! is the set of all simplices of dimension p). With this
assumption it is easy to see that relation R,q(7) can be computed in O(|Rpq(7)|+
log et + log |2P]]).

5.3 Implementation and Storage Requirements

We describe here an implementation of the NMD-DS that is optimized for storage
costs as well as for traversal operations. This implementation is inherently static
and do not support editing operations.

Maps o and ¢~ ! are encoded as balanced binary search trees, which support
logarithmic access time, implemented as arrays.

Each entry in the array encoding map o contains one key corresponding
to a vertex copy and one pointer to its corresponding split vertex, for a total
cost, of 2n. references, being n. the number of vertex copies introduced by the
decomposition process. Similarly each entry in the array encoding the map o+
contains one key corresponding to a split vertex and one pointer to the list of its
vertex copies. All vertex copies can be maintained in a single array, segmented
according to the different (disjoint) lists corresponding to split vertices. Thus, one
list can be located in such array by two offset numbers, which can be compressed
in a single reference. Therefore, ¢~ ! can be implemented by 2n,+n. references in
total, being ng the number of original vertices duplicated by the decomposition
process (n. > 2ny).

Relations VPT and oy are encoded as trie dictionaries whose words are the
sequences of vertex indexes obtained by lexicographic ordering of simplices. A
trie dictionary is usually implemented as a special binary search tree called a
ternary tree. We assume again an array implementation of this tree. In this case,
the trie for the map o for a d-complex takes less than (297! — (d + 3))ny (4d+1)
references.

In order to implement relations VPT', for 0 < p < d, we note that all trees for
all tries for VPT for all 0 < p < d overlap. From this property, assuming again
an array implementation for the trie, the collective encoding of all relations VPT
for 0 < p < d can be done with 2|£2972| 4 2|02l4= 1| — v references.
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Table 1. (a) Acronyms for data structures reviewed in Section 3; (b) ratios of storage
costs against reviewed data structures for the NMD-DS used to encode a simplicial
3-manifold; (c) break-even thresholds on the number of singlarities that make other
data structures more competitive than the NMD-DS.

(a) (b) (c)

TIA |Indexed with Adjacencies [15] Ratio to NMD-DS threshold
CT Cell Tuple [1] A <021 RE | > 86
nGM 1-G-Map [12] CT > 2.8 TCC| > 50
RE Radial Edge [10] nGM > 2.28 PE > 33
TCC Tri-Cyclic Cusps [8]

PE Partial Entity [11]

TS Triangle-Segment [2]

6 Comparisons and Discussion

In this Section, we compare the NMD-DS data structure with the data structures
reviewed in Section 3 and listed in Table la. In Table 1b we compare the NMD-
DS, over the 3-manifold domain, against data structures IA, CT and nGM.

Over the 3-manifold domain the NMD-DS reduces to the IQM-DS augmented
with the VT relations. Our comparison shows that the NMD-DS it requires
nearly five times the space required by the TA. However, edge-based (Ry;) and
face-based (Rap) relations cannot be efficiently retrieved from the IA while it is
possible to retrieve all topological relations in optimal time from the NMD-DS
(see [14] for details).

The NMD-DS encodes non-manifoldness in a separate layer and thus NMD-
DS storage requirements grow as the degree of the non-manifoldness increases.
We have compared the NMD-DS with the RE, the TCC and the PE data struc-
tures used for representing non-manifold solids. For each of them, we compute
a threshold, on the number of top simplices incident to a singular vertex, below
which our data structure is more compact than the others. Table 1(c) summa-
rizes the results of this analysis (see [14] for details). The break-even point, above
which our data structure is no longer competitive, occurs, for the PE, when at
least one third of top simplices are incident to a singular vertex. Storage cost of
the NMD-DS and that of the TS both depends on the degree of non-manifoldness
in the modeled 2-complex. However, under the hypthesis that the average vertex

order is greater than six we find that the TS is always more compact than the
NMD-DS.

7 Concluding Remarks

In this paper, we have introduced a new, dimension-independent, data structure
for describing simplicial complexes, called the Non-Manifold Decomposition data
structure (NMD-DS). The NMD-DS is a two-level data structure being based
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on a decomposition of the complex into simpler components, called initial quasi-
manifolds, which can be encoded in a compact data structure supporting efficient
traversal. We have reviewed and analyzed existing data structures for simplicial
and cell complexes, and we have evaluated the NMD-DS data structure with
respect to them.

The NMD-DS structure supports efficient traversal algorithms, and it is com-
pact. In particular, our analysis has shown that it is more compact than any data
structure for non-manifold solids when less than one third of the cells of the com-
plex are non-manifold. Moreover, the NMD-DS structure scales very well to the
manifold case, since it exhibits a negligible overhead when applied to a manifold
complex.
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