Skip to main content

Ranking Structured Documents Using Utility Theory in the Bayesian Network Retrieval Model

  • Conference paper
String Processing and Information Retrieval (SPIRE 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2857))

Included in the following conference series:

  • 534 Accesses

Abstract

In this paper a new method based on Utility and Decision theory is presented to deal with structured documents. The aim of the application of these methodologies is to refine a first ranking of structural units, generated by means of an Information Retrieval Model based on Bayesian Networks. Units are newly arranged in the new ranking by combining their posterior probabilities, obtained in the first stage, with the expected utility of retrieving them. The experimental work has been developed using the Shakespeare structured collection and the results show an improvement of the effectiveness of this new approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Acid, S., de Campos, L.M., Fernández-Luna, J.M., Huete, J.F.: An information retrieval model based on simple Bayesian networks. International Journal of Intelligent Systems 18, 251–265 (2003)

    Article  MATH  Google Scholar 

  2. Baeza-Yates, R., Ribeiro-Nieto, B.: Modern Information Retrieval. Addison-Wesley, Harlow (1999)

    Google Scholar 

  3. Baumgarten, C.: A probabilistic model for distributed information retrieval. In: Proceedings of ACM–SIGIR Conference, pp. 258–266 (1997)

    Google Scholar 

  4. Bordogna, G., Pasi, G.: Flexible representation and querying of heterogeneous structured documents. Kibernetika 36(6), 617–633 (2000)

    Google Scholar 

  5. Chiaramella, Y.: Information retrieval and structured documents. In: Agosti, M., Crestani, F., Pasi, G. (eds.) ESSIR 2000. LNCS, vol. 1980, pp. 291–314. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  6. Crestani, F., de Campos, L.M., Fernández-Luna, J.M., Huete, J.F.: A multilayered Bayesian network model for structured document retrieval. In: Nielsen, T.D., Zhang, N.L. (eds.) ECSQARU 2003. LNCS (LNAI), vol. 2711, pp. 74–86. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  7. de Campos, L.M., Fernández-Luna, J.M., Huete, J.F.: A layered Bayesian network model for document retrieval. In: Crestani, F., Girolami, M., van Rijsbergen, C.J.K. (eds.) ECIR 2002. LNCS, vol. 2291, pp. 169–182. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  8. Graves, A., Lalmas, M.: Video retrieval using an MPEG-7 based inference network. In: Proceedings of the 25th ACM–SIGIR Conference, pp. 339–346 (2002)

    Google Scholar 

  9. French, S.: Decision Theory. An introduction to the Mathematics of Rationality. Ellis Horwood Limited. Wiley, Chichester (1986)

    Google Scholar 

  10. Kazai, G., Lalmas, M., Reid, J.: The Shakespeare test collection, Available at http://qmir.dcs.qmul.ac.uk/Focus/resources2.htm

  11. Kazai, G., Lalmas, M., Roelleke, T.: Focussed structured document retrieval. In: Laender, A.H.F., Oliveira, A.L. (eds.) SPIRE 2002. LNCS, vol. 2476, pp. 241–247. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  12. Lalmas, M., Ruthven, I.: Representing and retrieving structured documents with Dempster-Shafer’s theory of evidence: Modelling and evaluation. Journal of Documentation 54(5), 529–565 (1998)

    Article  Google Scholar 

  13. Myaeng, S.H., Jang, D.H., Kim, M.S., Zhoo, Z.C.: A flexible model for retrieval of SGML documents. In: Proceedings of the 21th ACM–SIGIR Conference, pp. 138–145 (1998)

    Google Scholar 

  14. Piwowarski, B., Faure, G.E., Gallinari, P.: Bayesian networks and INEX. In: Proceedings of the INEX Workshop, pp. 7–12 (2002)

    Google Scholar 

  15. Roelleke, T., Lalmas, M., Kazai, G., Ruthven, I., Quicker, S.: The accessibility dimension for structured document retrieval. In: Crestani, F., Girolami, M., van Rijsbergen, C.J.K. (eds.) ECIR 2002. LNCS, vol. 2291, pp. 284–302. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  16. Shachter, R.D.: Probabilistic Inference and Influence Diagrams. Operations Research 36(5), 527–550 (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Crestani, F., de Campos, L.M., Fernández-Luna, J.M., Huete, J.F. (2003). Ranking Structured Documents Using Utility Theory in the Bayesian Network Retrieval Model. In: Nascimento, M.A., de Moura, E.S., Oliveira, A.L. (eds) String Processing and Information Retrieval. SPIRE 2003. Lecture Notes in Computer Science, vol 2857. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39984-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-39984-1_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20177-9

  • Online ISBN: 978-3-540-39984-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics