Negotiation as a Generic Component
Coordination Primitive

Jean Marc Andreoli and Stefania Castellani

Xerox Research Centre Europe
Grenoble, France
Firstname.Lastname@xrce.xerox.com

Abstract. In this paper, we claim that negotiation is a powerful ab-
stract notion for the coordination of distributed autonomous compo-
nents, and is therefore a suitable candidate for the definition of a generic
coordination middleware tool, at the same level as transactions or mes-
saging. Although specific negotiation mechanisms have been proposed
in various application contexts, there is still a need to define a truely
generic concept of negotiation, suitable for a middleware layer. This pa-
per provides some elements towards the definition of such a concept. A
salient feature of our proposal is that it introduces a rich representa-
tion of the state of a negotiation, inspired by proof-nets in Linear Logic
and their game semantics, well beyond the traditional state-transition
graphs. Furthermore, this representation is entirely decoupled from the
dynamics of the negotiation processes that may use it, and hence avoids
to rely on any specific “rule of the game” as to how a negotiation should
proceed. It can thus adapt to any such rule, the definition of which is
delegated to the negotiating components themselves.

Keywords: Negotiation, components, coordination, middleware, proto-
cols

1 Introduction

Negotiation is a pervasive aspect of everyday life and it is not surprising that
various approaches have been proposed to use computer software to support some
forms of negotiation processes in various applications. In particular, the literature
on multi-agent systems is rich with proposals to support negotiations in meeting
scheduling, electronic trading, service matching and many other collaborative
applications. More generic forms of negotiation also exist in service discovery
mechanisms, advanced transaction models, quality of service selection etc. While
most of these proposals make sense in the context of the applications for which
they have been designed, they are hardly transportable across applications, and
across architectural layers within an application. In other words, there is no
satisfactory generic model of negotiation which could provide the basis of a
middleware tool that any distributed application could rely on at multiple levels.

Middleware infrastructures, such as Corba [, Jini [2], but also the more
recent WebServices [3], are gaining momentum, following the success of the In-
ternet and private networks, trying to address recurrent needs of distributed

J.-B. Stefani, I. Demeure, and D. Hagimont (Eds.): DAIS 2003, LNCS 2893, pp. 86-7] 2003.
© IFIP International Federation for Information Processing 2003

Negotiation as a Generic Component Coordination Primitive 87

application development, esp. in the domain of e-commerce [4] and trading [5].
From “glue” between various components of a distributed program, middleware
is evolving towards the role of “integration tool” coordinating users and appli-
cations. Existing middleware products provide some form of support for net-
work communication, coordination, reliability, scalability, and heterogeneity [6].
In the present paper, we propose negotiation as a new concept to enrich the
set of traditional coordination facilities offered by middleware systems, such as
transactions, messaging, discovery. The challenge here is to devise a notion of
negotiation which, on the one hand, goes beyond simple arbitrary interaction,
and on the other hand, avoids adopting a specific rule of the game (like Contract
Nets or any of the multitude of variants of Auctions studied in the literature)
that would only make sense in specific contexts. This is achieved through a game
theoretic approach, where the negotiation behaviour of a component is under-
stood in terms of moves in an abstract game “component vs rest-of-the-world”.

In order to illustrate our model, called Xplore, we make use of a sample
case in the domain of collaborative commerce, namely an alliance of printshops
in which each partner has the ability to negotiate the outsourcing of print jobs,
possibly split into multiple slots, to the other partners in the alliance. This
application scenario has been detailed in [7]. Of course, the scope of the proposed
model and methods goes well beyond this specific example, and aims at applying
to any form of negotiation (commercial or not) in any application involving
software objects capable of making autonomous decisions.

Section Plintroduces the basic building blocks of our negotiation model: com-
ponents, services and data-items. The model itself, based on the notion of ne-
gotiation graphs and their partial mirroring, is presented in Section Bl together
with an algorithm exploiting this model to implement a fully generic negotia-
tion process. Section M provides a detailed example of use of our model in the
e-commerce application mentioned above. Sections Bl and [@ conclude the paper.

2 Negotiation Concepts

2.1 Components, Services, Data-Items

From a generic viewpoint, the goal of a negotiation is to have a set of components,
behaving as autonomous decision makers, reach an agreement as to a set of
actions to be executed by each of them. Once a rule of the game is adopted,
the participants to a negotiation may have assigned roles, differentiating their
possibilities of interaction, but a priori, a negotiation process is essentially peer-
to-peer. On the other hand, negotiations do not arise out of the blue, and need
to be initiated by some components inviting other components. This invitation
mechanism is, by nature, client-server: the client invites the server and the two
roles (host/guest) are essentially distinct. Hence, negotiations offer a perfect
framework in which to resolve the classical antithesis between the client-server
and peer-to-peer component interaction models.

Without committing to any computational model, we assume that a compo-
nent is an encapsulated piece of software executing on one or more machines,

88 Jean Marc Andreoli and Stefania Castellani

and publishing to the outside world an interface composed of a list of services.
The notion of interface here is similar to that in object-oriented systems, except
that the mechanism of invocation of a service in our system (described below) is
fundamentally different from that of a method in the interface of a traditional
object, be it synchronous (client-server) or asynchronous (peer-to-peer).

A service declaration in the interface simply consists of a name and a list of
formal parameters. We are not concerned here with typing issues, so we assume
that the parameters are not explicitly typed. Also, parameters have no attached
mode (input or output), since that would not make sense in our invocation
mechanism. Invoking a service results in some actions being triggered within the
component. They may not be visible outside the component but they may be
long-lived and may themselves result in other invocations.

Consider, for example, the sample application mentioned in the introduction,
supporting the interactions within an alliance of printshops in the process of
outsourcing or insourcing some of their print jobs. We may assume that each
printshop A is represented by a software agent performing actions related to
outsourcing and insourcing of print jobs (possibly under direct human control),
realised through the following services:

— outsrc(job): denotes an action by A of outsourcing a print job named job
(as a whole or in slots); outsrc is the service name and job is the (here
unique) formal parameter.

— split(job,jobl,job2): denotes an action by A of splitting a job named
job into two slots named jobl and job2 respectively.

— insrc(job): denotes an action by A of accepting a job named job.

Components manage sets of data-items over which negotiations can be engaged.
To support heterogeneity and to achieve genericity, the infrastructure makes no
assumption whatsoever as to how the components store these data-items and in
what format. The only assumption is that each data-item can be described by
its properties. Each property is supposed to describe an “aspect” of the item by
a “term” (constraint). In our example, a print job is a data-item that can be
described by various aspects such as cost, size, deadline, etc., and the term
cost<20 denotes a property that pertains to the aspect cost. From the point of
view of the negotiation infrastructure, aspects and terms are uninterpreted.

2.2 Bilateral Negotiations

A service invocation is the most basic form of negotiation, between two com-
ponents with distinguished roles (client and server). It consists of three phases
(detailed in Section B]).

— Invitation: client — server
The client initiates the negotiation by specifying a service from the interface
of the server, together with a mapping between the formal parameters of
the service declaration in the server and local names of data-items in the

Negotiation as a Generic Component Coordination Primitive 89

client. These data-items constitute the objects of the negotiation. For ex-
ample split(job=J,job1=J1, job2=J2) denotes an invocation of a service
split in the server, with formal parameters job, jobl, job2 mapped onto
data-items named J,J1,J2 in the client. Hence, there are three negotiation
objects in that negotiation, and agreement must be reached on all of them.
— Unwinding: peer-to-peer
At the time of the invitation, the client may already have established prop-
erties about the negotiation objects. Once the invitation is completed, both
the client and the server may iteratively refine these properties. During this
phase, the roles of client and server are completely blurred, at least from the
infra~structural point of view (of course, under a specific rule of the game,
the client and the server may take asymmetric roles).
— Agreement: client < server
Finally, the negotiation ends when the server is satisfied with the properties
of the data-items attached to its parameters. The client may then choose to
enact or not the proposed agreement.

2.3 Multi-party Negotiations

Service invocations, which are basic bilateral negotiations, can easily be com-
bined to achieve arbitrary multi-party negotiations. The key here is to have a
coordinator component launch multiple bilateral negotiation (ie. service invoca-
tions) with each participant, and play with each of them as a copycat represen-
tative of the others. The inter-dependencies between the bilateral negotiations
are simply achieved by sharing of the negotiation objects.

For example, consider a multi-party negotiation in which a printshop Ay
wishes to outsource a job split into two slots allocated to, respectively, printshops
Ay and As. Here, the participants are Ay, A1, As. We introduce an additional
participant C', whose sole role is to coordinate the negotiation in order to achieve
the stated result. C' just needs to perform the following invocations in parallel
(parallelism is denoted by @), lauching corresponding bilateral negotiations:

Ap:outsrc(job=J) @ Aj:split(job=J,jobl=J1,job2=J2) @
Aj:insrc(job=J1) @ As:insrc(job=J2)

Here, C' manipulates three data-items (print jobs), locally named, respectively,
J,J1, J2. Interdependence between the bilateral negotiations launched by C' is
simply achieved by sharing the negotiation objects, picked among these data-
items. Thus, the two bilateral negotiations launched by the invocations Ag:split
and Aj:insrc, between C and, respectively, Ay and A;, are interdependent sim-
ply because they share a common negotiation object, named J1 in C and, re-
spectively, jobl and job in the corresponding servers. As far as J1 is concerned,
in the negotiation, C plays with Ap:split exactly as A;:insrc does with C' and,
vice-versa, C plays with Aj:insrc exactly as Ag:split does with C. This is an
instance of the “copycat” strategy, a quite classical concept of game theory. Note
however that here: (i) the copycat may involve more than two players and (%)

90 Jean Marc Andreoli and Stefania Castellani

J.cost<10 (5

J.cost<15
J.date<3 ¢

J.date<2

O J.cost<20
J.size<14

Fig. 1. An example of negotiation graph.

the moves of the players are asynchronous (in fact, the former property is made
possible by the latter). Thus, if a data-item named X in C' is shared in three
bilateral negotiations launched by C' as service invocations si, o, 3, then, as far
as X is concerned, C' plays with its partner in s; as both of its partners play with
it in s; and s (where 4, j, k is any permutation of 1,2, 3).

Note that, although in the example above the set of servers invited by C' is
statically defined at its initialisation, this need not always be the case. It may
very well happen that C starts a bilateral negotiation with a first server, and
then, depending on its evolution, C' decides to invite other servers. This dynam-
icity is both conceptually and practically essential. Conceptually, it means there
is no boundary to the complexity of the patterns for combining bilateral nego-
tiations. Practically, for example, it is usual to start e-commerce negotiations
by selecting a set of potential partners, where the selection process is itself a
negotiation, eg. with a yellow-page service such as UDDI [3].

3 Negotiation Model

We focus here on bilateral negotiations obtained by service invocation, since more
complex ones can be built from them. In Xplore, a component acting as server
in a service invocation stores the state of the negotiation as a data structure
called a negotiation graph which is manipulated via a negotiation protocol.

3.1 Negotiation Graphs

It is assumed that a participant to a negotiation, be it client or server, is ca-
pable of making decisions, so that: (i) during the negotiation, the component
may explore several alternatives in a decision, leading to negotiation contexts
characterised by different combinations of choices for these alternatives; and (i7)
each decision by the component, whether it involves alternatives or not, is made
on the basis of previous negotiation contexts. Consequently, the overall state of a
negotiation for a given component can be captured in a “bi-colored” graph: white
nodes represent negotiation contexts and black nodes represent decision points

Negotiation as a Generic Component Coordination Primitive 91

with alternatives. Figure [l gives an example of such a negotiation graph. The
graph must be directed and acyclic, and its edges have the following meaning:

— A white node N has at most one parent node, which must (if any) be black,
and represents one alternative in the decision expressed by its parent (black)
node. A white node without parent represents a context that does not result
of a decision (typically, the initial context of a negotiation).

— A black node N has at least one parent node, which must (all) be white.
The context in which the decision represented by N is taken is given by the
fusion of all its parent (white) nodes.

To make decisions in an informed way, the participants must have access to the
information available at each negotiation context (ie. white node) about the state
of the negotiation in that context. Such information consists of pairs composed
of a local name of a data-item, and a constraint (term) on that data-item. In our
example, such a pair could be J.cost<20 (the name and the term constraining
its value are on each side of the dot), meaning that the cost of the job J should
not exceed a certain threshold 20. Consequently, each white node is decorated
with specific information about the negotiation at that node in the form of name-
term pairs. By inheritance, the overall information available at a white node is
given by the set of such pairs attached to that node and to all its ancestor white
nodes.

3.2 The Xplore Protocol

The Xplore protocol is a set of primitives allowing a component to express
negotiation decisions through manipulations of a negotiation graph.

— Invitation: During any negotiation, a component can launch and become
client of a new negotiation by invoking a service from another (or the same)
component (in server mode). Invitation is a negotiation decision of its own,
and hence is attached to a negotiation context (white node).

e Connect(n:nodeld, m:mapping, c:component): invites a component ser-
vice, specified by ¢, to join the negotiation from node n onward. This
results in the creation of a new graph, initially reduced to the single node
n, in the server component. The mapping m specifies the translation ta-
ble between the formal parameters of server ¢ and the local names of
data-items in the client.

— Unwinding: At any stage, a component (whether client or server) partici-
pating in a negotiation can further refine its graph for that negotiation:

e Open(n,ni,...,ny:nodeld): creates a node n (which must not already
exist) with parent nodes nq,...,n, (which must exist). All the parent
nodes nq,...,n, (if any) must be of the same colour, and n is then of
the opposite colour. If p = 0, then n is white (creation of a negotiation
root context) and if p > 2, then n is black, hence nq,...,n, must (all)
be white (fusion of negotiation contexts). In the latter case, the parent
nodes must be pairwise compatible. Two nodes are said to be compatible

92

Jean Marc Andreoli and Stefania Castellani

when they do not appear on branches of the negotiation graph which
diverge at a black node, since that would mean that the two nodes are
alternatives and hence cannot be part of any final agreement.

e Assert(n:nodeld, v:name, a:aspect, t:term): expresses the decision that,
in the negotiation context represented by node n in the graph, the value
of the data-item named v must have the property expressed by term
t pertaining to aspect a. Node n must exist and be white. This is the
way to populate context nodes with information about the negotiation
state at these nodes, for the other concerned participants to see (and
eventually react).

e Request(n:nodeld, v:name, a:aspect): expresses that, to proceed with
the negotiation, the component is interested in information, obtained
through assertions by the other concerned participants, about a partic-
ular aspect a of a data-item named v at node n (which must exist and
be white).

e Quit(n:nodeld): expresses that the negotiation will never succeed at
node n (which must exist and be white), so the other concerned par-
ticipants need not elaborate further.

— Agreement: A component in server mode in a negotiation may end the

negotiation in one branch of the graph
o Ready(ni,...,np:nodeld): expresses that the server is satisfied with the
state of the negotiation at nodes ni,...,n, (which must exist and be
white). In other words, the component has seen enough information and
is ready to finalise the negotiation in the state represented by the fusion
of these nodes, which must be pairwise compatible.
When a server expresses its readiness, the client must decide whether or not
to enact the agreement. This can be obtained by a classical transactional
two-phase commit protocol, where the client first Reserves the agreement
delivered by the server, then Confirms or Cancels the reservation. This
allows real synchronisation of agreements between multiple servers (needed
since all the other operations, including the Ready, are asynchronous). We
do not discuss here further the transactional management of agreements, as
this has been widely investigated in the literature. For example, the compo-
nent coordination infrastructure CLF []], which had a deep influence on the
design of Xplore, proposes a form of light-weight transaction management
which is directly applicable here.

3.3 The Xplore Infrastructure

An application in Xplore is seen as one big negotiation, with sub-negotiations
nested at an arbitrary level by the invitation mechanism (as with nested trans-
actions). Hence, from the negotiation infrastructure point of view, it is possible
to represent the state of the application as a tree (also called the invocation
network), the vertices of which are labeled by negotiation graphs and the edges
of which are the service invocations. The negotiation infrastructure operates
on that network, augmented each time the Connect primitive is executed. Its

Negotiation as a Generic Component Coordination Primitive 93

main roles are: (i) at each edge of the network, to synchronise back and forth the
relevant decisions taken in the two graphs linked by that edge; and (ii) at each
vertex of the network, to detect consensus at that vertex, ie. agreement decisions
at the end vertex of its out-going edges. These two functions form the software
core of the Xplore infrastructure, which is entirely distributed across the ver-
tices of the invocation network (each vertex lives in a component). The main
difficulty arises from the fact that each negotiation operation at a vertex of the
network is contextualised by a node in the corresponding negotiation graph, and
the topology of the graph must be taken into account to process each operation.
For example, the synchronisation algorithm has the following behaviour.

— A call to the Open primitive never needs to be mirrored immediately, be-
cause it always creates a fresh node with no information attached to it, so it
is irrelevant to any neighbour in the invocation network.

— A call of the form Assert(n,v,a,t) in one vertex need only be replicated onto
those neighbours in the invocation network which have previously made calls
of the form Request(n’,v,a) where nodes n,n’ are compatible, ie. do not lie
on alternative branches (diverging at a black node). In the replicated call, the
local name v must be replaced by its image in the conversion table attached
to the concerned neighbour. Furthermore, the replicated call may need to
be preceded by calls to the Open primitive to make sure that node n is
mirrored on the concerned neighbours.

— A call of the form Request(n,v,a) in one vertex need only be replicated
onto those neighbours in the invocation network which have a local name
v’ corresponding to v in the conversion table attached to them. The repli-
cated call must specify v’ in place of v. As above, the replicated call may
require prior node mirroring using Open. Furthermore, all the calls of the
form Assert(n’,v,a,t) at any node n’ related to n must be replicated on the
originator of the Request call.

The consensus detection algorithm at a vertex k, is even more involved as it needs
to detect combinations of calls of the form Ready(Ny) at a set K of vertices
k linked to k, in the invocation network, ie. at servers invited by k, as client.
Not all the servers invited by k, need to be included in K, but there must be at
least one of them, and if one server k is included in K, then so should all those
invited at nodes which are ancestors of the nodes of Nji. Furthermore, all the
nodes in N = J,.c x N must be pairwise compatible, ie. not lie on alternative
branches (diverging at a black node). In that case, consensus is detected and the
primitive Ready(NN) is called by k, as server.

An implementation along these lines has been realised, where the compo-
nents process the calls to the XPlore protocol in an asynchronous, actor-like
fashion [9].

4 An Example

We now illustrate the negotiation framework presented above on the sample
negotiation introduced in Section

94

Jean Marc Andreoli and Stefania Castellani

A0:split(job=J,jobl=J1, job2=J2)

Al:insrc (job=J1)

A2:insrc (job=J2)

Asserted at node 2

Asserted at node 2

Asserted at node 2

o 211:2:;: ::200 Q job.size <= 50 o job.size <= 50
obl.size <= 50 job.cost <= 100 job.cost <= 100
ob2.size <= 50
obl.cost <= 100
ob2.cost <= 100

@ @

@

Requested at node 0

initial situation

ob.size
ob. cost Requested at node 0 Requested at node 0
o obl.size a job.size o job.size
obl.cost job.cost job.cost
ob2.size
ob2.cost
@ Asserted at node 4
job.size = 15

(b)
Asserted at node 4

job.size =

Asserted at node 4

jobl.size = 15 15

decision

Asserted at node 4

©)
Asserted at node 4

jobl.size job.size = 15

job2.size =

@

®
Asserted at node 4

@

job.size = 35

Fig. 2. An example of negotiation graph mirroring.

@
Asserted at node 4

job.size =

Asserted at node 4

jobl.size
job2.size

15 15

35

“Ne-0|Y ooV oo |¥
“ o0V eV e-0|Ye-o

Ap:outsrc(job=J) @ Aj:split(job=J,jobl=J1,job2=J2) @
Aj:insrc(job=J1) @ As:insrc(job=J2)

We have here four components: C, Ag, A1, As, where C is a coordinator, and
Ap, A1, Ay are printshops (their interfaces are described in Section Z3). At ini-
tialisation, the coordinator C creates a graph with a single root node, then, from
this graph, invites the participants above in separate bilateral negotiations, us-
ing calls to the Connect primitives at the root node. In the end, five graphs are
created together with four links in the invocation network, between the graph in
C and each of the graphs corresponding to the invocations performed by C' (ie.
two for Ag and one for each of Ay, As). The participants then start to work on
their negotiation graphs using the Xplore primitives, automatically mirrored in
a timely way by the infrastructure. Each path in the graph can be viewed as a
dialog between the participants consisting of successive refinements of the terms
of the agreement. Having multiple paths in the graph allows several interwoven
alternatives to be explored in parallel. For example, the following fragment of a
conversation among the three printshops through the coordinator corresponds to

Negotiation as a Generic Component Coordination Primitive 95

a phase of the negotiation where A; makes a proposal to Ag on one slot of a job.
Figure 2 shows the negotiation graph mirroring corresponding to this dialog.

— Aj:insrc.{Open(3,2),0pen(4,3),Assert(4,job.size=15)}
Aq:insrc decides to explore one alternative in which the size of the job it
would accept is 15. By creating black node 3, it leaves the possibility of ex-
ploring other alternatives. At white node 4, A; may locally attach resouces
which it anticipates will be needed to fulfil its commitment in that alterna-
tive, but this need not be made public. These decisions are taken according
to its own specific semantics, characterising, here, its strategy in accepting
jobs. The resulting situation is depicted in Figure [A(a).

— Aj:insrc— C.{Open(3,2),0pen(4,3),Assert(4,J1.size=15) }
We assume that C' had previously informed A;:insrc that the size aspect of
its job parameter was requested in the negotiation in context 2 (or one of
its ancestors). The infrastructure therefore mirrors into C' the information
it has just asserted on that aspect in context 4. Since C' does not know this
context yet, the infrastructure mirrors the missing bit of the graph (nodes 3
and 4) into C. Note that the formal parameter name job known by A;:insrc
is converted into the corresponding name J1 known by C.

— C'+— Ag:split.{Open(3,2),0pen(4,3),Assert(4,jobl.size=15)}
The mirroring process continues from C', which now looks for all the partic-
ipants which had requested information on the size of J1 in the negotiation;
here, only Ag:split. The information is therefore passed on to it. Again,
node 4 not being heard of yet by Ag:split, the missing bit of the graph
is first mirrored. And again, the data-item name J1 is converted into the
corresponding parameter name jobl. The resulting situation is depicted in
Figure 2(b).

— Ag:split.Assert(4,job2.size=35)
Ag:split had previously been informed that the total size of its job is con-
strained to be equal to 50 in context 2 (or one of its ancestors). The con-
straint therefore holds in context 4 since it is a descendent of 2. Furthermore,
knowing that in context 4 the size of slot jobl is constrained to be equal
to 15, Ag:split infers that the size of the other slot job2 is constrained to
be equal to 35 in that context. This constraint propagation, which is here
a characteristic of the semantics of service Ag:split, could be performed
automatically by a constraint solver. The resulting situation is depicted in
Figure 2l(c).

— Ap:split— C.Assert(4,J2.size=35)
Mirroring is re-activated from Ag:split to C, which had previously re-
quested information on the size of job2. Again, the parameter name job2 is
converted into its corresponding name J2 in C.

— '+ Ag:insrc.Assert(4,job.size=35)
The mirroring process continues in C, which passes on the information it has
just received on the size of J2 to As:insrc which had initially requested it.
The name J2 is converted again into the parameter name job. The resulting
situation is depicted in Figure 2(d).

96 Jean Marc Andreoli and Stefania Castellani

5 Discussion

A distinctive feature of distributed applications is that, even when their func-
tionality is simple, they tend to involve a multitude of generic issues such as
consistency, awareness, authorisation, etc. Each of these aspects have been stud-
ied separately, each leading to a different class of models and solutions. Thus,
transactions deal with consistency issues, messaging and discovery with aware-
ness issues, cryptography and security protocols with authorisation issues, etc.
Software engineering techniques such as Aspect-Oriented Programming [T0] help
specify and maintain these aspects separately, but they do not provide a unified
model in which these aspects would appear as facets of the same mechanism. We
claim here that many aspects, at least those pertaining to component coordina-
tion, can be unified into a single model, around a generic notion of negotiation.

Negotiation is indeed a proto-typical kind of coordinated process, and the
literature on e-negotiation abounds with system descriptions which specify how
participants should coordinate in order to achieve certain goals. However, these
proposals are often embedded into full-blown applications (eg. [11]), and rely
on a plethora of so-called generic mechanisms [12] (Contract-Nets, Auctions,
Match-making etc. with many variants) which it is difficult to choose from a
priori, outside a specific application context. These proposals are therefore not
suitable for a generic middleware infrastructure, where the components and the
service they offer, hence their negotiation needs, can be widely diverse. Our
approach, on the contrary, seeks to abstract away any specific negotiation scheme
and to formalise only universal characteristics of negotiation processes: (i) the
possibility of exploring alternative branches and (i) the incremental refinement
of the terms in a negotiation.

The model of negotiation we have presented here draws on ideas coming
from constraint programming and constraint propagation [I3], in particular dis-
tributed constraint satisfaction [I4] where constraints are viewed as autonomous
agents propagating “no-good” information via their shared variables, and coop-
erative constraint solving [I5]. The other major source of inspiration is proof-
theory in formal logic, in particular proof-nets in Linear Logic [16] which offer
a totally desequentialised representation of logical inferences as a graph, similar
to our negotiation graphs (inferences are here negotiation decisions). The game
theoretic interpretation of proofs has also strongly influenced our view of
negotiation as games.

6 Conclusion

In this paper, it is claimed that negotiation is an appropriate abstraction for a
middleware level service for the coordination of distributed components, on a
par with traditional middleware concepts such as transactions, messaging and
discovery. Our model provides an abstract representation of the state of a ne-
gotiation through a bi-colored graph, and exploits this model to build a fully
generic negotiation process, viewed as the partially synchronised construction of
such graphs.

Negotiation as a Generic Component Coordination Primitive 97

References

1. McConnell, S.: Negotiation Facility. Technical report, OMG (1999)

2. Waldo, J.: The Jini Architecture for Network-Centric Computing. Communications
of the ACM 42 (1999) 76-82

3. Newcomer, E.: Understanding WebServices: XML, WSDL, SOAP, and UDDI.
Addison Wesley Professional (2002)

4. Charles, J.: Middleware Moves to the Forefront. ITEEE Computer Magazine 32
(1999) 17-19

5. Marvie, R., Merle, P., Geib, J.M., Leblanc, S.: TORBA: Trading Contracts for
CORBA. In: Proc. of COOTS —6th USENIX Conference on Object-Oriented Tech-
nologies and Systems, San Antonio, Texas, USA. (2001)

6. Emmerich, W.: Software Engineering and Middleware: A Roadmap. In: Proc. of
ICSE 2000, The future of Software Engineering, Munich, Germany (2000)

7. Andreoli, J.M., Castellani, S., Munier, M.: AllianceNet: Information Sharing,
Negotiation and Decision-Making for Distributed Organizations. In: Proc. of
EcWeb2000, Greenwich, U.K. (2000)

8. Andreoli, J.M., Arregui, D., Pacull, F., Riviere, M., Vion-Dury, J.Y., Willamowski,
J.: Clf/mekano: a framework for building virtual-enterprise applications. In: Proc.
of EDOC’99, Manheim, Germany (1999)

9. Agha, G., Mason, I., Smith, S., Talcott, C.: A foundation for actor computation.
Journal of Functional Programming 7 (1997) 1-72

10. Kiczales, G., Lamping, J., Menhdhekar, A., Maeda, C., Lopes, C., Loingtier, J.M.,
Irwin, J.: Aspect-oriented programming. In Aksit, M., Matsuoka, S., eds.: Proc.
of ECOOP '97, Jyvéskyla, Finland, Springer-Verlag (1997)

11. Chavez, A., Maes, P.: Kasbah: An agent marketplace for buying and selling goods.
In: Proc. of 1st Conference on Practical Applications of Intelligent Agents and
Multi-Agents, London, U.K. (1996) 75-90

12. Dignum, F., Sierra, C., eds.: Agent Mediated Electronic Commerce. LNAT 1991,
Springer Verlag (2001)

13. van Hentenryck, P., Saraswat, V.: Strategic directions in constraint programming.
ACM Computing Surveys 28 (1996) 701-726

14. Yokoo, M., Hirayama, K.: Algorithms for Distributed Constraint Satisfaction: A
Review. Autonomous Agents and Multi-Agent Systems 3 (2000) 185-207

15. Monfroy, E., Castro, C.: Basic operators for solving constraints via collaboration
of solvers. In Campbell, J., Roanes-Lozano, E., eds.: Proc. of AISC 2000, Madrid,
Spain, Springer-Verlag (2001) 142-156

16. Girard, J.Y.: Linear logic. Theoretical Computer Science 50 (1987) 1-102

17. Laurent, O.: Polarized games. In: Proc. of LICS’02, Copenhagen, Denmark, IEEE

Computer Society (2002) 265-275

	1 Introduction
	2 Negotiation Concepts
	2.1 Components, Services, Data-Items
	2.2 Bilateral Negotiations
	2.3 Multi-party Negotiations

	3 Negotiation Model
	3.1 Negotiation Graphs
	3.2 The Xplore Protocol
	3.3 The Xplore Infrastructure

	4 An Example
	5 Discussion
	6 Conclusion
	References

