Abstract
This paper shows, that three different types of logics for coalgebras are institutions. The logics differ regarding the presentation of their syntax. In the first framework, abstract behavioural logic, one has a syntax-free representation of behavioural properties. We then turn to coalgebraic logic, the syntax of which is given as an initial algebra. The last framework, which we consider, is coalgebraic modal logic, the syntax of which is concretely given.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aczel, P., Mendler, N.: A Final Coalgebra Theorem. In: Dybjer, P., Pitts, A.M., Pitt, D.H., Poigné, A., Rydeheard, D.E. (eds.) Category Theory and Computer Science. LNCS, vol. 389, pp. 357–365. Springer, Heidelberg (1989)
Adámek, J.: Free algebras and automata realizations in the language of categories. Comment. Math. Univ. Carolinae 15, 589–602 (1974)
Borceux, F.: Handbook of Categorical Algebra, vol. 2. Cambridge University Press, Cambridge (1994)
Carboni, A., Kelly, G., Wood, R.: A 2-categorical approach to change of base and geometric morphisms I. Cahiers de Topologie et Géometrié Différentielle Catégoriques 32(1), 47–95 (1991)
Cirstea, C.: Institutionalizing coalgebraic modal logic. In: Moss, L. (ed.) Coalgebraic Methods in Computer Science (CMCS 2002). Electr. Notes in Theoret. Comp. Sci., vol. 65. Elsevier Science Publishers, Amsterdam (2002)
Goguen, J., Burstall, R.: Institutions: Abstract Model Theory for Specification and Programming. Journal of the Association for Computing Machinery 39(1) (1992)
Goldblatt, R.: A calculus of terms for coalgebras of polynomial functors. In: Corradini, M.L.A., Montanari, U. (eds.) Coalgebraic Methods in Computer Science (CMCS 2001). Electr. Notes in Theoret. Comp. Sci., vol. 44 (2001)
Jacobs, B.: Many-sorted coalgebraic modal logic: a model-theoretic study. Theoret. Informatics and Applications 35(1), 31–59 (2001)
Jacobs, B., Hermida, C.: Structural Induction and Coinduction in a Fibrational Setting. Information and Computation 145, 107–152 (1998)
Kurz, A.: A Co-Variety-Theorem for Modal Logic. In: Proceedings of Advances in Modal Logic 2, Uppsala, 1998. Center for the Study of Language and Information. Stanford University, Stanford (2000)
Kurz, A.: Logics for Coalgebras and Applications to Computer Science. PhD thesis, Universität München (April 2000)
Kurz, A., Pattinson, D.: Coalgebras and Modal Logics for Parameterised Endofunctors. Technical report, CWI (2000)
MacLane, S.: Categories for the Working Mathematician. Springer, Heidelberg (1971)
Milner, R.: Communication and Concurrency. International series in computer science. Prentice-Hall, Englewood Cliffs (1989)
Moss, L.: Coalgebraic Logic. Annals of Pure and Applied Logic 96, 277–317 (1999)
Park, D.: Concurrency and Automata on Infinite Sequences. In: Deussen, P. (ed.) GI-TCS 1981. LNCS, vol. 104. Springer, Heidelberg (1981)
Pattinson, D.: Expressivity Results in the Modal Logic of Coalgebras. PhD thesis, Universität München (June 2001)
Rößiger, M.: Coalgebras and Modal Logic. In: Reichel, H. (ed.) Coalgebraic Methods in Computer Science (CMCS 2000). Electr. Notes in Theoret. Comp. Sci., vol. 33 (2000)
Rößiger, M.: From Modal Logic to Terminal Coalgebras. Theor. Comp. Sci. 260, 209–228 (2001)
Rutten, J.: Universal Coalgebra: A theory of systems. Theor. Comp. Sci. 249(1), 3–80 (2000)
Tarlecki, A.: Institutions: An Abstract Framework for Formal Specifications. In: Astesiano, E., Kreowski, H.-J., Krieg-Brückner, B. (eds.) Algebraic Fondations of System Specification, vol. 2. Springer, Heidelberg (1999)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Pattinson, D. (2003). Translating Logics for Coalgebras. In: Wirsing, M., Pattinson, D., Hennicker, R. (eds) Recent Trends in Algebraic Development Techniques. WADT 2002. Lecture Notes in Computer Science, vol 2755. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-40020-2_23
Download citation
DOI: https://doi.org/10.1007/978-3-540-40020-2_23
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-20537-1
Online ISBN: 978-3-540-40020-2
eBook Packages: Springer Book Archive