Skip to main content

Balancing Specificity and Generality in a Panmictic-Based Rule-Discovery Learning Classifier System

  • Conference paper
Learning Classifier Systems (IWLCS 2002)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2661))

Included in the following conference series:

  • 297 Accesses

Abstract

A Learning Classifier System has been developed based on industrial experience. Termed iLCS, the methods were designed and selected to function with common data properties found in industry. Interestingly, it considers a different strategy to XCS type systems, with the rule discovery being based panmictically. In order to show the worth of the iLCS approach, the benchmark data-mining application of the Wisconsin Breast Cancer dataset was investigated. A competitive level of 95.3% performance was achieved; mainly due to the introduction of a generalisation pressure through a fitness to mate (termed fertility) that was decoupled from a fitness to effect (termed effectiveness). Despite no subsumption deletion being employed the real-valued rule-base was simple to understand, discovering similar patterns in the data to XCS. Much further testing of iLCS is required to confirm robustness and performance. Currently, the iLCS approach represents a flexible alternative to niche-based LCSs, which should further the advancement of the LCS field for industrial application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Wilson, S.W.: State of XCS Classifier System Research. In: Lanzi, P.L., Stolzmann, W., Wilson, S.W. (eds.) IWLCS 1999. LNCS (LNAI), vol. 1813, pp. 63–82. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  2. Bernadó, E., Llorà, X., Garrell, J.M.: XCS and GALE: a Comparative Study of Two Learning Classifier Systems on Data Mining. In: Lanzi, P.L., Stolzmann, W., Wilson, S.W. (eds.) IWLCS 2001. LNCS (LNAI), vol. 2321, pp. 115–133. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  3. Dixon, P.W., Corne, D.W., Oates, M.J.: A Preliminary Investigation of Modified XCS as a Generic Data Mining Tool. In: Lanzi, P.L., Stolzmann, W., Wilson, S.W. (eds.) IWLCS 2001. LNCS (LNAI), vol. 2321, pp. 133–151. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  4. Llorà, X., Garrell, J.M.: Co-evolving Different Knowledge Representations with Finegrained Parallel Learning Classifier Systems. In: Proceeding of the Genetic and Evolutionary Computation Conference (GECCO 2002), pp. 934–941. Morgan Kaufmann, San Francisco (2002)

    Google Scholar 

  5. Browne, W.N.L.: The Development of an Industrial Learning Classifier System for Application to a Steel Hot Strip Mill, Doctoral Thesis, University of Wales, Cardiff (1999)

    Google Scholar 

  6. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor (1975)

    Google Scholar 

  7. Wilson, S.W.: Classifier Fitness Based on Accuracy. Evolutionary Computation 3(2), 149–175 (1995)

    Article  Google Scholar 

  8. Kovacs, T.: Deletion Schemes for Classifier Systems. In: Wolfgang, B., Daida, J., Eiben, A.E., Garzon, M.H., Honavar, V., Jakiela, M., Smith, R.E. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 1999), pp. 329–336. Morgan Kaufmann, San Francisco (1999)

    Google Scholar 

  9. Horn, J., Goldberg, D.E., Deb, K.: Implicit Niching in a Learning Classifier System: Nature’s Way. Evolutionary Computation 2(1), 37–66 (1994)

    Article  Google Scholar 

  10. Wilson, S.W.: ZCS: A Zeroth Level Classifier System. Evolutionary Computation 2(1), 1–18 (1994)

    Article  Google Scholar 

  11. Wilson, S.W.: Mining Oblique Data with XCS. In: Lanzi, P.L., Stolzmann, W., Wilson, S.W. (eds.) IWLCS 2000. LNCS (LNAI), vol. 1996, p. 158. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  12. Smith, R.E., Goldberg, D.E.: Reinforcement Learning with Classifier Systems: Adaptive Default Hierarchy Formation. Applied Artificial Intelligence 6(1), 79–102 (1992)

    Article  Google Scholar 

  13. Blake, C., Merz, C.: UCI repository of machine learning databases (1998), Available at: http://www.ics.uci.edu/~mlearn/MLRepository.html

  14. Lanzi, P.L.: A Study of the Generalization Capabilities of XCS. In: Proc. 7th Int. Conf. on Genetic Algorithms, pp. 418–425. Morgan Kaufmann, USA (1997)

    Google Scholar 

  15. Michalewicz, Z., Fogel, D.B.: How to Solve It: Modern Heuristics. Springer, Heidelberg (2000)

    MATH  Google Scholar 

  16. Fairley, A., Yates, D.F.: Inductive operators and rule repair in a Hybrid Genetic Learning System: Some Initial Results. In: Fogarty, T.C. (ed.) AISB-WS 1994. LNCS, vol. 865, pp. 166–179. Springer, Heidelberg (1994)

    Google Scholar 

  17. Venturini, G.: Adaptation in Dynamic Environments through a Minimal Probability of Exploration. In: Cliff, D., Husbands, P., Meyer, J.A., Wilson, S.W. (eds.) From Animals to Animats 3: Proceedings of the Third International Conference on Simulation of Adaptive Behaviour, pp. 371–379. MIT Press, Cambridge (1994)

    Google Scholar 

  18. Frey, P.W., Slate, D.J.: Letter Recognition Using Holland-Style Adaptive Classifiers. Machine Learning 6, 161–182 (1991)

    Google Scholar 

  19. Holmes, J.H., Lanzi, P.L., Stolzmann, W., Wilson, S.W.: Learning Classifier Systems: New Models, Successful Applications. In: Information Processing Letters (2002) (to appear), http://world.std.com/~sw/pubs.html

  20. Wilson, S.W.: Get Real! XCS with Continuous-Valued Inputs. In: Booker, L., Forrest, S., Mitchell, M., Riolo, R.L. (eds.) Festschrift In Honor of John H. Holland, Centre for the Study of Complex Systems, pp. 11–121 (1999)

    Google Scholar 

  21. Koza, J.R.: Genetic Programming: on the Programming of Computers by Means of Natural Selection (Complex Adaptive Systems). MIT Press, Cambridge (1992)

    Google Scholar 

  22. Kovacs, T.: Strength or accuracy? A comparison of two approaches to fitness calculation in learning classifier systems. In: Wu, A.S. (ed.) Proceedings of the 1999 Genetic and Evolutionary Computation Conference Workshop Program, pp. 258–265 (1999)

    Google Scholar 

  23. Butz, M.V., Wilson, S.W.: An Algorithmic Description of XCS, Technical Report 2000017, Illinois Genetic Algorithms Laboratory, Illinois (2000), http://prediction-dynamics.com/

  24. Carse, B., Pipe, A.G.: Involving Temporal Rules with the Delayed Action Classifier System - Analysis and New Results. In: Parmee, I.C. (ed.) Adaptive Computing in Design and Manufacture V, pp. 31–242. Springer, London (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Browne, W.N.L. (2003). Balancing Specificity and Generality in a Panmictic-Based Rule-Discovery Learning Classifier System. In: Lanzi, P.L., Stolzmann, W., Wilson, S.W. (eds) Learning Classifier Systems. IWLCS 2002. Lecture Notes in Computer Science(), vol 2661. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-40029-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-40029-5_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20544-9

  • Online ISBN: 978-3-540-40029-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics