Skip to main content

Mapping Artificial Immune Systems into Learning Classifier Systems

  • Conference paper
Learning Classifier Systems (IWLCS 2002)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2661))

Included in the following conference series:

Abstract

This paper presents one form of mapping Artificial Immune Systems (AIS) into Learning Classifier Systems (LCS). Artificial Immune Systems can be defined as adaptive systems inspired by theoretical models and principles of the biological immune system and applied to solve problems in the most diverse domains, from biology to computing. Similar to Learning Classifier Systems, already used to model complex adaptive systems, a better understanding of Artificial Immune Systems can be obtained when they are analysed under the perspective of complex adaptive systems. One of the goals here is to determine complementary features of both systems (LCS and AIS), aiming at providing a novel mapping conception. The formal treatment proposed along the paper may then be used to integrate models for complex adaptive systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bersini, H., Varela, F.: Hints for Adaptive Problem Solving Gleaned from Immune Networks. In: Proceedings of the First Conference on Parallel Problem Solving from Nature, pp. 343–354 (1990)

    Google Scholar 

  2. Bersini, H.: Immune Network and Adaptive Control. In: Proceedings of the First European Conference on Artificial Life, pp. 217–226. MIT Press, Cambridge (1991)

    Google Scholar 

  3. Bersini, H.: Self-Assertion versus Self-Recognition: A Tribute to Francisco Varela. In: Proc. of ICARIS 2002, pp. 107–112 (2002)

    Google Scholar 

  4. Bonelli, P., Parodi, A., Sen, S., Wilson, S.: NEWBOOLE: A fast GBML system. In: Porter, B., Mooney, R. (eds.) Machine Learning: Proceedings of the Seventh International Conference, Texas, June 21, pp. 153–159. Morgan Kaufmann Publishers, Inc., San Francisco (1990)

    Google Scholar 

  5. Booker, L.B., Goldberg, D.E., Holland, J.H.: Classifier Systems and Genetic Algorithms. Artificial Intelligence 40, 235–282 (1989)

    Article  Google Scholar 

  6. Burnet, F.M.: The Clonal Selection Theory of Acquired Immunity. Cambridge University Press, Cambridge (1959)

    Google Scholar 

  7. Costa, A.M., Vargas, P.A., Von Zuben, F.J., França, P.M.: Makespan Minimization on Parallel Processors: An Immune-Based Approach. In: Proceedings of the 2002 Congress on Evolutionary Computation (CEC 2002), Honolulu, Hawaii, May 12-17, vol. 1, pp. 920–925 (2002)

    Google Scholar 

  8. Cowan, G.A., Pines, D., Meltzer, D. (eds.): Complexity: metaphors, models and reality, Proceedings, Santa Fe Institute. Studies in the Sciences of Complexity, vol. XIX. Addison-Wesley Pub. Co., Reading (1994)

    Google Scholar 

  9. Darwin, C.: On the Origin of Species By Means of Natural Selection, 6th edn. (1859), [Online Book] www.literature.org/authors/darwin

  10. Dasgupta, D. (ed.): Artificial Immune Systems and their Applications. Springer, Heidelberg (1999)

    MATH  Google Scholar 

  11. de Castro, L.N., Timmis, J.I.: Artificial Immune Systems: A New Computational Intelligence Approach. Springer, London (2002)

    MATH  Google Scholar 

  12. de Castro, L.N., Von Zuben, F.J.: aiNet: An Artificial Immune Network for Data Analysis. In: Abbass, H.A., Sarker, R.A., Newton, C.S. (eds.) Data Mining: A Heuristic Approach, ch. XII, pp. 231–259. Idea Group Publishing, USA (2001)

    Google Scholar 

  13. Dorigo, M., Colombetti, M.: Robot Shaping: An Experiment in Behavior Engineering (Intelligent Robotics and Autonomous Agents). MIT Press, Cambridge (1997)

    Google Scholar 

  14. Farmer, J.D., Packard, N.H., Perelson, A.S.: The Immune System, Adaptation and Machine Learning. Physica 22D, 187–204 (1986)

    MathSciNet  Google Scholar 

  15. Furuhashi, T., Nakaoka, K., e Uchikawa, Y.: A Study on Fuzzy Classifier System for Finding Control Knowledge of Multi-Input Systems. In: Genetic Algorithms And Soft Computing, pp. 489–502 (1994)

    Google Scholar 

  16. George, A.J.T., Gray, D.: Receptor Editing During Affinity Maturation. Imm. Today 20(4), 196 (1999)

    Article  Google Scholar 

  17. Goldberg, D.E.: Genetic Algorithms in Search Optimization, and Machine Learning. Addison-Wesley, Inc., Reading (1989)

    Google Scholar 

  18. Hart, E., Ross, P.: The Evolution and Analysis of a Potential Antibody Library for Use in Job-Shop Scheduling. In: Corne, D., Dorigo, M., Glover, F. (eds.) New Ideas in Optimization, pp. 185–202. McGraw Hill, London (1999)

    Google Scholar 

  19. Hofmeyr, S.A., Forrest, S.: Architecture for an Artificial Immune System. Evolutionary Computation 8(4), 443–473 (2000)

    Article  Google Scholar 

  20. Holland, J.H.: Adaptation in Natural and Artificial Systems: an Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. The MIT Press, Ann Arbor (1992)

    Google Scholar 

  21. Holland, J.H.: Hidden Order: How Adaptation Builds Complexity. Addison-Wesley, Inc., Reading (1995)

    Google Scholar 

  22. Holland, J.H.: Emergence: From Chaos to Order. Addison-Wesley, Inc., Reading (1998)

    Google Scholar 

  23. Holland, J.H.: Escaping Brittleness: The possibilities of general-purpose learning algorithms applied to parallel rule-based systems. In: Michalski, R.S., Carbonell, J.G., Mitchell, T.M. (eds.) Machine Learning: An Artificial Intelligence approach, vol. II, pp. 593–623. Morgan Kaufman, Los Altos (1986)

    Google Scholar 

  24. Holmes, J.H.: Discovering Risk of Disease with a Learning Classifier System. In: ICGA 1997 (1997), http://cceb.med.upenn.edu/holmes/icga97.ps.gz

  25. Holmes, J.H., Lanzi, P.L., Stolzmann, W., Wilson, S.W.: Learning classifier systems: new models, successful applications. Information Processing Letters (2000) (to appear)

    Google Scholar 

  26. Hunt, J.E., Cooke, D.E.: Learning Using an Artificial Immune System. Journal of Network and Computer Applications 19, 189–212 (1996)

    Article  Google Scholar 

  27. Ishiguro, A., Kondo, T., Watanabe, Y., Shirai, Y., Uchikawa, H.: Immunoid: A Robot with a Decentralized Consensus-Making Mechanism Based on the Immune System. Presented at ICMAS Workshop on Immunity-Based Systems, pp. 82–92 (December 1996)

    Google Scholar 

  28. Jerne, N.K.: Towards a Network Theory of the Immune System. Ann. Immunol (Int. Pasteur) 125C, 373–389 (1974)

    Google Scholar 

  29. Jerne, N.K.: Idiotypic Networks and other preconceived ideas. Immunological Rev. 79, 5–24 (1984)

    Article  Google Scholar 

  30. Johnson, S.: Emergence: The Connected Lives of Ants, Bains, Cities and Software. Penguim Books (2002)

    Google Scholar 

  31. Kauffman, S.A.: Principles of Adaptation in Complex Systems. In: Stein, D. (ed.) Lectures in the Sciences of Complexity. Addison Wesley, Reading (1989)

    Google Scholar 

  32. Kovacs, T., Lanzi, P.L.: A Learning Classifier Systems Bibliograph, Technical Report: CSRP-99-19, University of Birmingham, United Kingdom (1999), http://www.cs.bris.ac.uk/~kovacs/lcs/search.html

  33. Kovacs, T.: A Learning Classifier Systems Bibliograph (2000), http://www.cs.bris.ac.uk/~kovacs/lcs/search.html

  34. Kruisbeek, A.M.: Tolerance. The Immunologist 3/5-6, 176–178 (1995)

    Google Scholar 

  35. Lanzi, P.L., Stolzmann, W., Wilson, S.W. (eds.): IWLCS 1999. LNCS (LNAI), vol. 1813. Springer, Heidelberg (2000)

    Google Scholar 

  36. Lanzi, P.L., Stolzmann, W., Wilson, S.W. (eds.): IWLCS 2000. LNCS (LNAI), vol. 1996. Springer, Heidelberg (2001)

    Google Scholar 

  37. Michalewicz, Z., Fogel, D.B.: How to solve it: Modern Heuristics. Springer, Heidelberg (2000)

    MATH  Google Scholar 

  38. Michelan, R., Von Zuben, F.J.: Decentralized Control System for Autonomous Navigation based on an Evolved Artificial Immune Network. In: Proceedings of the 2002 Congress on Evolutionary Computation (CEC 2002), Honolulu, Hawaii, May 12-17, vol. 2, pp. 1021–1026 (2002)

    Google Scholar 

  39. Oprea, L.M.: Antibody repertoires and pathogen recognition: the role of germline diversity and somatic hypermutation. PhD. Thesis, University of New Mexico (1999)

    Google Scholar 

  40. Perelson, A.S., Oster, G.F.: Theoretical Studies of Clonal Selection: Minimal Antibody Repertoire Size and Reliability of Self-Nonself Discrimination. J. Theor. Biol. 81, 645–670 (1979)

    Article  MathSciNet  Google Scholar 

  41. Shu, L., Schaeffer, J.: VCS: Variable Classifier System. In: ICGA 1989, pp. 334–339 (1989)

    Google Scholar 

  42. Smith, D.J., Forrest, S., Hightower, R.R., Perelson, A.S.: Deriving Shape Space Parameters from Immunological Data. Journal of Theoretical Biology 189, 141–150 (1998)

    Article  Google Scholar 

  43. Stolzmann, W.: Learning Classifier Systems using the Cognitive Mechanism of Anticipatory Behavioural Control, detailed version. In: Proceedings of the First European Workshop on Cognitive Modelling, Berlin, pp. 82–89 (1996)

    Google Scholar 

  44. Takadama, K., Terano, T., Shimohara, K., Hori, K., Nakasuka, S.: Making Organizational Learning Operational: Implications from Learning Classifier System. Computational and Mathematical Organization Theory (CMOT) 5(3), 229–252 (1999)

    Article  MATH  Google Scholar 

  45. Tomlinson, A., e Bull, L.: On Corporate Classifier Systems: Increasing the Benefits of Rule Linkage. In: GECCO 1999, pp. 649–656 (1999)

    Google Scholar 

  46. Varela, F., Sanchez, V., Coutinho, A.: Adaptive Strategies Gleaned from Immune Networks. In: Goodwin, B., Saunders, P. (eds.) Evolutionary and Epigenetic Order from Complex Systems: A Waddington Memorial Volume. Edinburgh U. Press (1989)

    Google Scholar 

  47. Vargas, P.A., Lyra, C., Von Zuben, F.J.: On-line Approach for Loss Reduction in Electric Power Distribution Networks Using Learning Classifier Systems. In: Lanzi, P.L., Stolzmann, W., Wilson, S.W. (eds.) IWLCS 2001. LNCS (LNAI), vol. 2321, pp. 181–196. Springer, Heidelberg (2002a)

    Chapter  Google Scholar 

  48. Vargas, P.A., de Castro, L.N., Von Zuben, F.J.: Artificial Immune Systems as Complex Adaptive Systems. In: Proceedings of the 1st International Conference on Artificial Immune Systems (ICARIS 2002), September 9-11, pp. 115–123. University of Kent at Canterbury, England (2002b)

    Google Scholar 

  49. Watanabe, Y., Ishiguro, A., Uchikawa, H.: Decentralized Behaviour Arbitration Mechanism for Autonomous Mobile Robot Using Immune Network. In: Dasgupta, D. (ed.) Artificial Immune Systems and their Applications. Springer, Heidelberg (1999)

    Google Scholar 

  50. Wilcox, J.R.: Organisational Learning within a Learning Classifier System, University of Illinois, Technical Report No. 95003 IlliGAL (1995)

    Google Scholar 

  51. Wilson, S.W.: ZCS: A zeroth level classifier system. Evolutionary Computation 1&2, 1–18 (1994)

    Article  Google Scholar 

  52. Wilson, S.W.: Classifier Fitness Based on Accuracy. Evolutionary Computation 2&3, 149–175 (1995)

    Article  Google Scholar 

  53. Zhou, H.H.: Classifier systems with long term memory. In: International Conference on Genetic Algorithms, pp. 178–182 (1985)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vargas, P.A., de Castro, L.N., Von Zuben, F.J. (2003). Mapping Artificial Immune Systems into Learning Classifier Systems. In: Lanzi, P.L., Stolzmann, W., Wilson, S.W. (eds) Learning Classifier Systems. IWLCS 2002. Lecture Notes in Computer Science(), vol 2661. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-40029-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-40029-5_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20544-9

  • Online ISBN: 978-3-540-40029-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics