Skip to main content

The 2003 Learning Classifier Systems Bibliography

  • Conference paper
Learning Classifier Systems (IWLCS 2002)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2661))

Included in the following conference series:

Abstract

With over 700 entries, this is the most comprehensive bibliography of the machine learning systems introduced by John Holland.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Emergent Computation. Proceedings of the Ninth Annual International Conference of the Center for Nonlinear Studies on Self-organizing, Collective, and Cooperative Phenomena in Natural and Artificial Computing Networks. A special issue of Physica D. Stephanie Forrest, Ed.(1990)

    Google Scholar 

  2. Collected Abstracts for the First International Workshop on Learning Classifier System (IWLCS 1992), October 6-8. NASA Johnson Space Center, Houston, Texas (1992)

    Google Scholar 

  3. Proceedings of the 2000 Congress on Evolutionary Computation (CEC 2000). IEEE Press, Las Alamitos(2000)

    Google Scholar 

  4. Lanzi, P.L., Stolzmann, W., Wilson, S.W. (eds.): IWLCS 2000. LNCS (LNAI), vol. 1996. Springer, Heidelberg (2001); In the Joint Workshops of SAB 2000 and PPSN 2000 (2000)

    Google Scholar 

  5. Proceedings of the 2001 Congress on Evolutionary Computation (CEC 2001). IEEE Press, Los Alamitos (2001)

    Google Scholar 

  6. Aguilar, J., Cerrada, M.: Fuzzy classifier system and genetic programming on system identification problems. In: Spector, L., Goodman, E.D., Wu, A., Langdon, W.B., Voigt, H.-M., Gen, M., Sen, S., Dorigo, M., Pezeshk, S., Garzon, M.H., Burke, E. (eds.) Proceedings ofthe Genetic and Evolutionary Computation Conference (GECCO 2001), San Francisco, California, USA, July 7-11, 2001, pp. 1245–1251. Morgan Kaufmann, San Francisco (2001)

    Google Scholar 

  7. Aguilar, J.L., Cerrada, M.: Reliability-Centered Maintenance Methodology-Based Fuzzy Classifier System Design for Fault Tolerance. In: Koza et al. [423], pp. 621 (One page paper)

    Google Scholar 

  8. Ahluwalia, M., Bull, L.: A Genetic Programming-based Classifier System. In: Banzhaf et al. [22], pp. 11–18

    Google Scholar 

  9. Albrecht, R.F., Steele, N.C., Reeves, C.R. (eds.): Proceedings of the International Conference on Artificial Neural Nets and Genetic Algorithms. Springer, Heidelberg (1993)

    Google Scholar 

  10. Angeline, P.J., Michalewicz, Z., Schoenauer, M., Yao, X., Zalzala, A. (eds.): Proceedings of the 1999 Congress on Evolutionary Computation CEC 1999, Washington, DC. IEEE Press, Los Alamitos (1999)

    Google Scholar 

  11. Arthur, W.B., Holland, J.H., LeBaron, B., Palmer, R., Talyer, P.: Asset Pricing Under Endogenous Expectations in an Artificial Stock Market. Technical report, Santa Fe Institute (1996); This is the original version of LeBaron (1999a)

    Google Scholar 

  12. Bacardit, J., Garrell, J.M.: Evolution of adaptive discretization intervals for A rule-based genetic learning system. In: Langdon, W.B., Cantú-Paz, E., Mathias, K., Roy, R., Davis, D., Poli, R., Balakrishnan, K., Honavar, V., Rudolph, G., Wegener, J., Bull, L., Potter, M.A., Schultz, A.C., Miller, J.F., Burke, E., Jonoska, N. (eds.) GECCO 2002: Proceedings of the Genetic and Evolutionary Computation Conference, p. 677. Morgan Kaufmann Publishers, San Francisco (2002)

    Google Scholar 

  13. Bacardit, J., Garrell, J.M.: Evolving multiple discretizations with adaptive intervals for a Pittsburgh rule-based learning classifier system. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, D., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Standish, R., Kendall, G., Wilson, S., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A.C., Dowsland, K., Jonoska, N., Miller, J. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 1818–1831. Springer, Heidelberg (2003)

    Google Scholar 

  14. Bäck, T. (ed.): Proceedings of the 7th International Conference on Genetic Algorithms (ICGA 1997). Morgan Kaufmann, San Francisco (1997)

    Google Scholar 

  15. Bäck, T., Fogel, D.B., Michalewicz, Z. (eds.): Handbook of Evolutionary Computation. Institute of Physics Publishing&Oxford University Press (1997), http://www.iop.org/Books/Catalogue/

  16. Bäck, T., Hammel, U., Schwefel, H.-P.: Evolutionary computation: Comments on the history and current state. IEEE Transactions on Evolutionary Computation 1(1), 3–17 (1997)

    Google Scholar 

  17. Baghdadchi, J.: A Classifier Based Learning Model for Intelligent Agents. In: Whitely et al. [699], pp. 870 (One page poster paper)

    Google Scholar 

  18. Bagnall, A.J.: A Multi-Adaptive Agent Model of Generator Bidding in the UK Market in Electricity. In: Whitely et al. [699], pp. 605–612

    Google Scholar 

  19. Bagnall, A.J., Smith, G.D.: An Adaptive Agent Model for Generator Company Bidding in the UK Power Pool. In: Proceedings of Artificial Evolution (1999)

    Google Scholar 

  20. Bagnall, A.J., Smith, G.D.: Using an Adaptive Agent to Bid in a Simplified Model of the UK Market in Electricity. In: Banzhaf et al. [22], pp. 774 (One page poster paper)

    Google Scholar 

  21. Ball, N.R.: Towards the Development of Cognitive Maps in Classifier Systems. In: Albrecht et al. [9], pp. 712–718

    Google Scholar 

  22. Banzhaf, W., Daida, J., Eiben, A.E., Garzon, M.H., Honavar, V., Jakiela, M., Smith, R.E. (eds.): Proceedings ofthe Genetic and Evolutionary Computation Conference (GECCO 1999). Morgan Kaufmann, San Francisco (1999)

    Google Scholar 

  23. Barry, A.: The Emergence of High Level Structure in Classifier Systems - A Proposal. Irish Journal of Psychology 14(3), 480–498 (1993)

    Google Scholar 

  24. Barry, A.: Hierarchy Formulation Within Classifiers System - A Review. In: Goodman et al. [300], pp. 195–211

    Google Scholar 

  25. Barry, A.: Aliasing in XCS and the Consecutive State Problem: 1 - Effects. In: Banzhaf et al. [22], pp. 19–26

    Google Scholar 

  26. Barry, A.: Aliasing in XCS and the Consecutive State Problem: 2 - Solutions. In: Banzhaf et al. [22], pp. 27–34

    Google Scholar 

  27. Barry, A.: Specifying Action Persistence within XCS. In: Whitely et al. [699], pp. 50–57

    Google Scholar 

  28. Barry, A.: XCS Performance and Population Structure within Multiple-Step Environments. PhD thesis, Queens University Belfast (2000)

    Google Scholar 

  29. Barry, A.: Limits in long path learning with XCS. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2724, pp. 1832–1843. Springer, Heidelberg (2003)

    Google Scholar 

  30. Barry, A.M.: The stability of long action chains in xcs. Journal of Soft Computing 6(3-4), 183–199 (2002)

    Google Scholar 

  31. Barry, D.A.: A hierarchical xcs for long path environments. In: Spector, L., Goodman, E.D., Wu, A., Langdon, W.B., Voigt, H.-M., Gen, M., Sen, S., Dorigo, M., Pezeshk, S., Garzon, M.H., Burke, E. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2001), San Francisco, California, USA, July 7-11, pp. 913–920. Morgan Kaufmann, San Francisco (2001)

    Google Scholar 

  32. Bauer, R.J.: Genetic Algorithms and Investment Strategies. Wiley Finance edn. John Wiley & Sons, Chichester (1994)

    Google Scholar 

  33. Baum, E.: Towards a model of intelligence as an economy of agents. Machine Learning 35(2), 155–185 (1999)

    Google Scholar 

  34. Baum, E., Durdanovic, I.: An Evolutionary Post Production System. In: Proceedings of the International Workshop on Learning Classifier Systems (IWLCS 2000), in the Joint Workshops of SAB 2000 and PPSN 2000 [4] (2000) (Extended abstract)

    Google Scholar 

  35. Baum, E., Durdanovic, I.: An Artificial Economy of Post Production Systems. In: Lanzi et al. [448], pp. 3–20

    Google Scholar 

  36. Belew, R.K., Forrest, S.: Learning and Programming in Classifier Systems. Machine Learning 3, 193–223 (1988)

    Google Scholar 

  37. Belew, R.K., Gherrity, M.: Back Propagation for the Classifier System. In: Schaffer [563], pp. 275–281

    Google Scholar 

  38. Bernadó, E., Llorà, X., Garrell, J.M.: XCS and GALE: A Comparative Study of Two Learning Classifier Systems with Six Other Learning Algorithms on Classification Tasks. In: Lanzi, P.L., Stolzmann, W., Wilson, S.W. (eds.) IWLCS 2001. LNCS (LNAI), vol. 2321, pp. 115–341. Springer, Heidelberg (2002); Short version publishe in Genetic and Evolutionary Compution Conference, GECCO 2001 (2001)

    Google Scholar 

  39. Bernadó, E., Llorà, X., Garrell, J.M.: Xcs and gale: A comparative study of two learning classifier systems on data mining. In: Lanzi et al. [448], pp. 115–132

    Google Scholar 

  40. Bersini, H., Varela, F.J.: Hints for Adaptive Problem Solving Gleaned From Immune Networks. In: Schwefel and Männer [572], pp. 343–354

    Google Scholar 

  41. Beunings, J., Bölkow, L., Heydemann, B., Kresling, B., Lieck-feld, C.-P., Mattheck, C., Nachtigall, W., Reichholf, J., Schmidt, B.J., Straa, V., Witt, R.: Bionik: Naturals Vorbild. WWF Dokumentationen. PRO FUTURA Verlag, Munchen (1993)

    Google Scholar 

  42. Biondi, J.: Robustness and evolution in an adaptive system application on classification task. In: Albrecht et al. [9], pp. 463–470

    Google Scholar 

  43. Bonarini, A.: ELF: Learning Incomplete Fuzzy Rule Sets for an Autonomous Robot. In: Zimmermann, H.-J. (ed.) First European Congress on Fuzzy and Intelligent Technologies - EUFIT 1993, Aachen, D, September 1993, vol. 1, pp. 69–75. Verlag der Augustinus Buchhandlung (1993)

    Google Scholar 

  44. Bonarini, A.: Evolutionary Learning of General Fuzzy Rules with Biased Evaluation Functions: Competition and Cooperation. In: Proc. 1st IEEE Conf. on Evolutionary Computation, pp. 51–56 (1994)

    Google Scholar 

  45. Bonarini, A.: Learning Behaviors Represented as Fuzzy Logic Controllers. In: Zimmermann, H.-J. (ed.) Second European Congress on Intelligent Techniques and Soft Computing - EUFIT 1994, Aachen, D, vol. 2, pp. 710–715. Verlag der Augustinus Buchhandlung (1994)

    Google Scholar 

  46. Bonarini, A.: Extending Q-learning to Fuzzy Classifier Systems. In: Gori, M., Soda, G. (eds.) AI*IA 1995. LNCS (LNAI), vol. 992, pp. 25–36. Springer, Heidelberg (1995)

    Google Scholar 

  47. Bonarini, A.: Delayed Reinforcement, Fuzzy Q-Learning and Fuzzy Logic Controllers. In: Herrera and Verdegay [336], pp. 447–466

    Google Scholar 

  48. Bonarini, A.: Delayed Reinforcement, Fuzzy Q-Learning and Fuzzy Logic Controllers. In: Herrera, F., Verdegay, J.L. (eds.) Genetic Algorithms and Soft Computing (Studies in Fuzziness), Berlin, D, vol. 8, pp. 447–466. Physica-Verlag, Heidelberg (1996)

    Google Scholar 

  49. Bonarini, A.: Evolutionary Learning of Fuzzy rules: competition and cooperation. In: Pedrycz, W. (ed.) Fuzzy Modelling: Paradigms and Practice, pp. 265–284. Kluwer Academic Press, Norwell (1996), ftp.elet.polimi.it/pub/Andrea.Bonarini/ELF/ELF-Pedrycz.ps.gz

  50. Bonarini, A.: Anytime learning and adaptation of fuzzy logic behaviors. Adaptive Behavior 5(3-4), 281–315 (1997)

    Article  Google Scholar 

  51. Bonarini, A.: Reinforcement Distribution to Fuzzy Classifiers. In: Proceedings of the IEEE World Congress on Computational Intelligence (WCCI) - Evolutionary Computation, pp. 51–56. IEEE Computer Press, Los Alamitos (1998)

    Google Scholar 

  52. Bonarini, A.: Comparing reinforcement learning algorithms applied to crisp and fuzzy learning classifier systems. In: Banzhaf et al. [22], pp. 52–59

    Google Scholar 

  53. Bonarini, A.: An Introduction to Learning Fuzzy Classifier Systems. In: Lanzi et al. [446], pp. 83–104

    Google Scholar 

  54. Bonarini, A., Basso, F.: Learning to compose fuzzy behaviors for autonomous agents. Int. Journal of Approximate Reasoning 17(4), 409–432 (1997)

    Google Scholar 

  55. Bonarini, A., Bonacina, C., Matteucci, M.: Fuzzy and crisp representation of real-valued input for learning classifier systems. In: Wu [739], pp. 228–235

    Google Scholar 

  56. Bonarini, A., Bonacina, C., Matteucci, M.: Fuzzy and Crisp Representations of Real-valued Input for Learning Classifier Systems. In: Lanzi et al. [446], pp. 107–124

    Google Scholar 

  57. Bonarini, A., Dorigo, M., Maniezzo, V., Sorrenti, D.: AutonoMouse: An Experiment in Grounded Behaviors. In: Proceedings of GAA 1991 - Second Italian Workshop on Machine Learning, Bari, Italy (1991)

    Google Scholar 

  58. Bonelli, P., Parodi, A.: An Efficient Classifier System and its Experimental Comparison with two Representative learning methods on three medical domains. In: Booker and Belew [72], pp. 288–295

    Google Scholar 

  59. Bonelli, P., Parodi, A., Sen, S., Wilson, S.W.: NEWBOOLE: A Fast GBML System. In: International Conference on Machine Learning, San Mateo, California, pp. 153–159. Morgan Kaufmann, San Francisco (1990)

    Google Scholar 

  60. Booker, L.B.: Intelligent Behavior as an Adaptation to the Task Environment. PhD thesis, The University of Michigan (1982)

    Google Scholar 

  61. Booker, L.B.: Improving the performance of genetic algorithms in classifier systems. In: Grefenstette [305], pp. 80–92

    Google Scholar 

  62. Booker, L.B.: Classifier Systems that Learn Internal World Models. Machine Learning 3, 161–192 (1988)

    Google Scholar 

  63. Booker, L.B.: Triggered rule discovery in classifier systems. In: Schaffer [563], pp. 265–274

    Google Scholar 

  64. Booker, L.B.: Instinct as an Inductive Bias for Learning Behavioral Sequences. In: Meyer and Wilson [476], pp. 230–237

    Google Scholar 

  65. Booker, L.B.: Representing Attribute-Based Concepts in a Classifier System. In: Rawlins [519], pp. 115–127

    Google Scholar 

  66. Booker, L.B.: Viewing Classifier Systems as an Integrated Architecture. In: Collected Abstracts for the First International Workshop on Learning Classifier System (IWLCS 1992) [2], October 6-8. NASA Johnson Space Center, Houston, Texas (1992)

    Google Scholar 

  67. Booker, L.B.: Do We Really Need to Estimate Rule Utilities in Classifier Systems? In: Wu [739], pp. 236–241

    Google Scholar 

  68. Booker, L.B.: Classifier systems, endogenous fitness, and delayed reward: A preliminary investigation. In: Proceedings of the International Workshop on Learning Classifier Systems (IWLCS 2000), in the Joint Workshops of SAB 2000 and PPSN 2000 [4] (2000) (extended abstract)

    Google Scholar 

  69. Booker, L.B.: Do We Really Need to Estimate Rule Utilities in Classifier Systems? In: Lanzi et al. [446], pp. 125–142

    Google Scholar 

  70. Booker, L.B.: Classifier systems, endogenous fitness, and delayed rewards: A preliminary investigation. In: Spector, L., Goodman, E.D., Wu, A., Langdon, W.B., Voigt, H.-M., Gen, M., Sen, S., Dorigo, M., Pezeshk, S., Garzon, M.H., Burke, E. (eds.) Proceedings ofthe Genetic an Evolutionary Computation Conference (GECCO 2001), San Francisco, California, USA, July 7-11, pp. 921–926 (2001)

    Google Scholar 

  71. Booker, L.B.: A new approach to encoding actions in classifier systems (2001)

    Google Scholar 

  72. Booker, L.B., Belew, R.K. (eds.): Proceedings of the 4th International Conference on Genetic Algorithms (ICGA 1991). Morgan Kaufmann, San Francisco (1991)

    Google Scholar 

  73. Booker, L.B., Goldberg, D.E., Holland, J.H.: Classifier Systems and Genetic Algorithms. Artificial lntelligence 40, 235–282 (1989)

    Google Scholar 

  74. Booker, L.B., Riolo, R.L., Holland, J.H.: Learning and Representation in Classifier Systems. In: Honavar, V., Uhr, L. (eds.) Artificial Intelligence and Neural Networks, pp. 581–613. Academic Press, London (1994)

    Google Scholar 

  75. Browne, W.: The Development of an Industrial Learning Classifier System for Application to a Steel Hot Strip Mill. PhD thesis, University of Wales, Cardiff (1999)

    Google Scholar 

  76. Browne, W., Holford, K., Moore, C.: An Industry Based Development of the Learning Classifier System Technique. Submitted to 4th International Conference on Adaptive Computing in Design and Manufacturing, ACDM 2000 (2000)

    Google Scholar 

  77. Browne, W., Holford, K., Moore, C., Bullock, J.: The implementation of a learning classifier system for parameter identification by signal processing of data from steel strip downcoilers. In: Augousti, A.T. (ed.) Software in Measurement. IEE Computer and Control Division (1996)

    Google Scholar 

  78. Browne, W., Holford, K., Moore, C., Bullock, J.: A Practical Application of a Learning Classifier System for Downcoiler Decision Support in a Steel Hot Strip Mill. Ironmaking and Steelmaking 25(1), 33–41 (1997); Engineering Doctorate Seminar 1997, Swansea, Wales, September 2 (1997)

    Google Scholar 

  79. Browne, W., Holford, K., Moore, C., Bullock, J.: A Practical Application of a Learning Classifier System in a Steel Hot Strip Mill. In: Smith et al. [597], pp. 611–614

    Google Scholar 

  80. Browne, W., Holford, K., Moore, C., Bullock, J.: An Industrial Learning Classifier System: The Importance of Pre-Processing Real Data and Choice of Alphabet. To appear in Engineering Applications of Artificial Intelligence (1999)

    Google Scholar 

  81. Bull, L.: Artificial Symbiology: evolution in cooperative multi-agent environments. PhD thesis, University of the West of England (1995)

    Google Scholar 

  82. Bull, L.: On ZCS in Multi-agent Environments. In: Eiben, A.E., Baeck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 471–480. Springer, Heidelberg (1998)

    Google Scholar 

  83. Bull, L.: On Evolving Social Systems. Computational and Mathematical Organization Theory 5(3), 281–298 (1999)

    Google Scholar 

  84. Bull, L.: On using ZCS in a Simulated Continuous Double-Auction Market. In: Banzhaf et al. [22], pp. 83–90

    Google Scholar 

  85. Bull, L.: Simple markov models of the genetic algorithm in classifier systems: Accuracy-based fitness. In: Proceedings of the International Workshop on Learning Classifier Systems (IWLCS 2000), in the Joint Workshops of SAB 2000 and PPSN 2000 [4] (2000) (Extended abstract)

    Google Scholar 

  86. Bull, L.: Simple markov models of the genetic algorithm in classifier systems: Multi-step tasks. In: Proceedings of the International Workshop on Learning Classifier Systems (IWLCS 2000), in the Joint Workshops of SAB 2000 and PPSN 2000 [4] (2000) (Extended abstract)

    Google Scholar 

  87. Bull, L.: Lookahead and latent learning in ZCS. In: Langdon, W.B., Cantú-Paz, E., Mathias, K., Roy, R., Davis, D., Poli, R., Balakrishnan, K., Honavar, V., Rudolph, G., We-gener, J., Bull, L., Potter, M.A., Schultz, A.C., Miller, J.F., Burke, E., Jonoska, N. (eds.) GECCO 2002: Proceedings of the Genetic and Evolutionary Computation Conference, New York, July 9-13, pp. 897–904. Morgan Kaufmann Publishers, San Francisco (2002)

    Google Scholar 

  88. Bull, L.: On accuracy-based fitness. Journal of Soft Computing 6(3-4), 154–161 (2002)

    Google Scholar 

  89. Bull, L., Fogarty, T.C.: Coevolving Communicating Classifier Systems for Tracking. In: Albrecht et al. [9], pp. 522–527

    Google Scholar 

  90. Bull, L., Fogarty, T.C.: Evolving Cooperative Communicating Classifier Systems. In: Sebald, A.V., Fogel, L.J. (eds.) Proceedings of the Third Annual Conference on Evolutionary Programming, pp. 308–315 (1994)

    Google Scholar 

  91. Bull, L., Fogarty, T.C.: Parallel Evolution of Communicating Classifier Systems. In: Proceedings of the 1994 IEEE Conference on Evolutionary Computing, pp. 680–685. IEEE, Los Alamitos (1994)

    Google Scholar 

  92. Bull, L., Fogarty, T.C.: Evolutionary Computing in Cooperative Multi-Agent Systems. In: Sen, S. (ed.) Proceedings of the 1996 AAAI Symposium on Adaptation, Coevolution and Learning in Multi-Agent Systems, pp. 22–27. AAAI, Menlo Park (1996)

    Google Scholar 

  93. Bull, L., Fogarty, T.C.: Evolutionary Computing in Multi-Agent Environments: Speciation and Symbiogenesis. In: Ebeling, W., Rechenberg, I., Voigt, H.-M., Schwefel, H.-P. (eds.) PPSN 1996. LNCS, vol. 1141, pp. 12–21. Springer, Heidelberg (1996)

    Google Scholar 

  94. Bull, L., Fogarty, T.C., Mikami, S., Thomas, J.G.: Adaptive Gait Acquisition using Multiagent Learning for Wall Climbing Robots. In: Automation and Robotics in Construction XII, pp. 80–86 (1995)

    Google Scholar 

  95. Bull, L., Fogarty, T.C., Snaith, M.: Evolutionin Multi-agent Systems: Evolving Communicating Classifier Systems for Gait in a Quadrupedal Robot. In: Eshelman [227], pp. 382–388

    Google Scholar 

  96. Bull, L., Holland, O.: Internal and External Representations: A Comparison in Evolving the Ability to Count. In: Proceedings of the First Annual Society for the Study of Artificial Intelligence and Simulated Behaviour Robotics Workshop, pp. 11–14 (1994)

    Google Scholar 

  97. Bull, L., Hurst, J.: Self-Adaptive Mutation in ZCS Controllers. In: Oates, M.J., Lanzi, P.L., Li, Y., Cagnoni, S., Corne, D.W., Fogarty, T.C., Poli, R., Smith, G.D. (eds.) EvoIASP 2000, EvoWorkshops 2000, EvoFlight 2000, EvoSCONDI 2000, EvoSTIM 2000, EvoTEL 2000, and EvoROB/EvoRobot 2000. LNCS, vol. 1803, pp. 339–346. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  98. Bull, L., Hurst, J., Tomlinson, A.: Mutation in Classifier System Controllers. In: et al. [228], pp. 460–467

    Google Scholar 

  99. Bull, L., O’Hara, T.: Accuracy-based neuro and neuro-fuzzy classifier systems. In: Langdon, W.B., Cantú-Paz, E., Mathias, K., Roy, R., Davis, D., Poli, R., Balakrishnan, K., Honavar, V., Rudolph, G., Wegener, J., Bull, L., Potter, M.A., Schultz, A.C., Miller, J.F., Burke, E., Jonoska, N. (eds.) GECCO 2002: Proceedings of the Genetic and Evolutionary Computation Conference, July 9-13, pp. 905–911. Morgan Kaufmann Publishers, San Francisco (2002)

    Google Scholar 

  100. Bull, L., Studley, M.: Consideration of multiple objectives in neural learning classifier systems. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, p. 549. Springer, Heidelberg (2002)

    Google Scholar 

  101. Bull, L., Wyatt, D., Parmee, I.: Towards the use of XCS in interactive evolutionary design. In: Langdon, W.B., Cantú-Paz, E., Mathias, K., Roy, R., Davis, D., Poli, R., Balakrishnan, K., Honavar, V., Rudolph, G., Wegener, J., Bull, L., Potter, M.A., Schultz, A.C., Miller, J.F., Burke, E., Jonoska, N. (eds.) GECCO 2002: Proceedings ofthe Genetic and Evolutionary Computation Conference, p. 951. Morgan Kaufmann Publishers, San Francisco (2002)

    Google Scholar 

  102. Butz, M., Goldberg, D.E., Stolzmann, W.: New challenges for an ACS: Hard problems and possible solutions. Technical Report 99019, University of Illinois at Urbana-Champaign, Urbana, IL (October 1999)

    Google Scholar 

  103. Butz, M., Goldberg, D.E., Stolzmann, W.: The anticipatory classifier system and genetic generalization. Technical Report 2000032, Illinois Genetic Algorithms Laboratory (2000)

    Google Scholar 

  104. Butz, M., Stolzmann, W.: Action-Planning in Anticipatory Classifier System. In: Wu [739], pp. 242–249

    Google Scholar 

  105. Butz, M.V.: An Implementation of the XCS classifier system in C. Technical Report 99021, The Illinois Genetic Algorithms Laboratory (1999)

    Google Scholar 

  106. Butz, M.V.: XCSJava 1.0: An Implementation of the XCS classifier system in Java. Technical Report 2000027, Illinois Genetic Algorithms Laboratory (2000)

    Google Scholar 

  107. Butz, M.V.: An Algorithmic Description of ACS2. In: Lanzi et al. [448], pp. 211–229

    Google Scholar 

  108. Butz, M.V.: Biasing Exploration in an Anticipatory Learning Classifier System. In: Lanzi et al. [448], pp. 3–22

    Google Scholar 

  109. Butz, M.V., Goldberg, D.E.: Bounding the population size in XCS to ensure reproductive opportunities. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, D., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2724, pp. 1844–1856. Springer, Heidelberg (2003)

    Google Scholar 

  110. Butz, M.V., Goldberg, D.E., Stolzmann, W.: Introducing a Genetic Generalization Pressure to the Anticipatory Classifier System - Part 1: Theoretical Approach. In: Whitely et al. [699], pp. 34–41, Also Technical Report 2000005 of the Illinois Genetic Algorithms Laboratory

    Google Scholar 

  111. Butz, M.V., Goldberg, D.E., Stolzmann, W.: Introducing a Genetic Generalization Pressure to the Anticipatory Classifier System - Part 2: Performance Analysis. In: Whitely et al. [699], pp. 42–49, Also Technical Report 2000006 of the Illinois Genetic Algorithms Laboratory

    Google Scholar 

  112. Butz, M.V., Goldberg, D.E., Stolzmann, W.: Investigating Generalization in the Anticipatory Classifier System. In: Deb, K., Rudolph, G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X. (eds.) PPSN 2000. LNCS, vol. 1917. Springer, Heidelberg (2000), Also technical report 2000014 of the Illinois Genetic Algorithms Laboratory

    Google Scholar 

  113. Butz, M.V., Goldberg, D.E., Stolzmann, W.: Probability-enhanced predictions in the anticipatory classifier system. In: Proceedings of the International Workshop on Learning Classifier Systems (IWLCS 2000), in the Joint Workshops of SAB 2000 and PPSN 2000 [4] (2000) (Extended abstract)

    Google Scholar 

  114. Butz, M.V., Kovacs, T., Lanzi, P.L., Wilson, S.W.: How XCS Evolves Accurate Classifiers. In: Spector, L., Goodman, E.D., Wu, A., Langdon, W.B., Voigt, H.-M., Gen, M., Sen, S., Dorigo, M., Pezeshk, S., Garzon, M.H., Burke, E. (eds.) GECCO 2001: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 927–934. Morgan Kaufmann, San Francisco (2001)

    Google Scholar 

  115. Butz, M.V., Pelikan, M.: Analyzing the evolutionary pressures in xcs. In: Spector, L., Goodman, E.D., Wu, A., Langdon, W.B., Voigt, H.-M., Gen, M., Sen, S., Dorigo, M., Pezeshk, S., Garzon, M.H., Burke, E. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2001), San Francisco, California, USA, July 7-11, pp. 935–942. Morgan Kaufmann, San Francisco (2001)

    Google Scholar 

  116. Butz, M.V., Sastry, K., Goldberg, D.E.: Tournament selection: Stable fitness pressure in XCS. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, D., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2724, pp. 1857–1869. Springer, Heidelberg (2003)

    Google Scholar 

  117. Butz, M.V., Wilson, S.W.: An Algorithmic Description of XCS. Technical Report 2000017, Illinois Genetic Algorithms Laboratory (2000)

    Google Scholar 

  118. Butz, M.V., Wilson, S.W.: An Algorithmic Description of XCS. In: Lanzi et al. [447], pp. 253–272

    Google Scholar 

  119. Butz, M.V., Wilson, S.W.: An algorithmic description of xcs. Journal of Soft Computing 6(3-4), 144–153 (2002)

    Google Scholar 

  120. Camilli, A.: Classifier systems in massively parallel architectures. Master’s thesis, University of Pisa (1990) (in Italian)

    Google Scholar 

  121. Camilli, A., Meglio, R.D.: Sistemi a classificatori su architetture a paral-lelismo massiccio. Technical report, Univ. Delgi Studi di Pisa (1989)

    Google Scholar 

  122. Camilli, A., Meglio, R.D., Baiardi, F., Vanneschi, M., Montanari, D., Serra, R.: Classifier System Parallelization on MIMD Architectures. Technical Report 3/17, CNR (1990)

    Google Scholar 

  123. Cao, Y.J., Ireson, N., Bull, L., Miles, R.: Distributed Learning Control of Traffic Signals. In: Oates, M.J., Lanzi, P.L., Li, Y., Cagnoni, S., Corne, D.W., Fogarty, T.C., Poli, R., Smith, G.D. (eds.) EvoIASP 2000, EvoWorkshops 2000, EvoFlight 2000, EvoSCONDI 2000, EvoSTIM 2000, EvoTEL 2000, and EvoROB/EvoRobot 2000. LNCS, vol. 1803, pp. 117–126. Springer, Heidelberg (2000)

    Google Scholar 

  124. Cao, Y.J., Ireson, N.: Design of a Traffic Junction Controller using a Classifier System and Fuzzy Logic. In: Reusch, B. (ed.) Fuzzy Days 1999. LNCS, vol. 1625. Springer, Heidelberg (1999)

    Google Scholar 

  125. Carbonaro, A., Casadei, G., Palareti, A.: Genetic Algorithms and Classifier Systems in Simulating a Cooperative Behavior. In: Albrecht et al. [9], pp. 479–483

    Google Scholar 

  126. Carse, B.: Learning Anticipatory Behaviour Using a Delayed Action Classifier System. In: Fogarty [246], pp. 210–223

    Google Scholar 

  127. Carse, B., Fogarty, T.C.: A delayed-action classifier system for learning in temporal environments. In: Proceedings of the 1st IEEE Conference on Evolutionary Computation, vol. 2, pp. 670–673 (1994)

    Google Scholar 

  128. Carse, B., Fogarty, T.C.: A Fuzzy Classifier System Using the Pittsburgh Approach. In: Davidor and Schwefel [169], pp. 260–269

    Google Scholar 

  129. Carse, B., Fogarty, T.C., Munro, A.: Distributed Adaptive Routing Control in Communications Networks using a Temporal Fuzzy Classifier System. In: Proceedings of the Fifth IEEE Conference on Fuzzy Systems, pp. 2203–2207. IEEE, Los Alamitos (1996)

    Google Scholar 

  130. Carse, B., Fogarty, T.C., Munro, A.: Evolutionary Learning of Controllers using Temporal Fuzzy Classifier Systems. In: Parmee, I.C. (ed.) Proceedings of the Second Conference on Adaptive Computing in Engineering Design and Control, pp. 174–180 (1996)

    Google Scholar 

  131. Carse, B., Fogarty, T.C., Munro, A.: Evolving fuzzy rule based controllers using genetic algorithms. International Journal for Fuzzy Sets and Systems 80, 273–293 (1996)

    Google Scholar 

  132. Carse, B., Fogarty, T.C., Munro, A.: The Temporal Fuzzy Classifier System and its Application to Distributed Control in a Homogeneous Multi-Agent ecology. In: Goodman et al. [300], pp. 76–86

    Google Scholar 

  133. Carse, B., Fogarty, T.C., Munro, A.: Evolving Temporal Fuzzy Rule-Bases for Distributed Routing Control in Telecommunication Networks. In: Herrera and Verdegay, pp. 467–488

    Google Scholar 

  134. Carse, B., Fogarty, T.C., Munro, A.: Artificial evolution of fuzzy rule bases which represent time: A temporal fuzzy classifier system. International Journal of Intelligent Systems 13(10–11), 905–927 (1998)

    Google Scholar 

  135. Casadei, G., Palareti, A., Proli, G.: Classifier System in Traffic Management. In: Albrecht et al. [9], pp. 620–627

    Google Scholar 

  136. Chalk, K., Smith, G.D.: Multi-Agent Classifier Systems and the Iterated Prisoner’s Dilemma. In: Smith et al. [597], pp. 615–618

    Google Scholar 

  137. Chalk, K.W., Smith, G.D.: The Co-evolution of Classifier Systems in a Competitive Environment. Poster presented at AISB 1994, Authors were from the University of East Anglia, U.K. (1994)

    Google Scholar 

  138. Cheang, S.M., Lee, K.H., Leung, K.S.: Data classification using genetic parallel programming. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2724, pp. 1918–1919. Springer, Heidelberg (2003)

    Google Scholar 

  139. Chen, H.-M., Ho, S.-Y.: Designing an optimal evolutionary fuzzy decision tree for data mining. In: Spector, L., Goodman, E.D., Wu, A., Langdon, W.B., Voigt, H.-M., Gen, M., Sen, S., Dorigo, M., Pezeshk, S., Garzon, M.H., Burke, E. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2001), San Francisco, California, USA, July 7-11, pp. 943–950. Morgan Kaufmann, San Francisco (2001)

    Google Scholar 

  140. Cichosz, P.: Reinforcement learning algorithms based on the methods of temporal differences. Master’s thesis, Institute of Computer Science, Warsaw University of Technology (1994)

    Google Scholar 

  141. Cichosz, P.: Reinforcement Learning by Truncating Temporal Differences. PhD thesis, Department of Electronics and Information Technology, Warsaw University of Technology (1997)

    Google Scholar 

  142. Cichosz, P., Mulawka, J.J.: GBQL: A novel genetics-based reinforcement learning architecture. In: Proceedings of the Third European Congress on Intelligent Techniques and Soft Computing, EUFIT 1995 (1995)

    Google Scholar 

  143. Cichosz, P., Mulawka, J.J.: Faster temporal credit assignment in learning classifier systems. In: Proceedings of the First Polish Conference on Evolutionary Algorithms, KAE 1996 (1996)

    Google Scholar 

  144. Cliff, D., Bullock, S.G.: Adding ’Foveal Vision’ to Wilson’s Animat. Adaptive Behavior 2(1), 47–70 (1993)

    Google Scholar 

  145. Cliff, D., Husbands, P., Meyer, J.-A., Wilson, S.W. (eds.): From Animals to Animats 3. Proceedings of the Third International Conference on Simulation of Adaptive Behavior (SAB 1994). A Bradford Book /MIT Press (1994)

    Google Scholar 

  146. Cliff, D., Ross, S.: Adding Temporary Memory to ZCS. Adaptive Behavior 3(2), 101–150 (1994); Also technical report ftp://ftp.cogs.susx.ac.uk/pub/reports/csrp/csrp347.ps.Z

  147. Cliff, D., Ross, S.: Adding Temporary Memory to ZCS. Technical Report CSRP347, School of Cognitive and Computing Sciences, University of Sussex (1995), ftp://ftp.cogs.susx.ac.uk/pub/reports/csrp/csrp347.ps.Z

  148. Cobb, H.G., Grefenstette, J.J.: Learning the persistence of actions in reactive control rules. In: Proceedings 8th International Machine Learning Workshop, pp. 293–297. Morgan Kaufmann, San Francisco (1991)

    Google Scholar 

  149. Collard, P., Escazut, C.: Relational Schemata: A Way to Improve the Expressiveness of Classifiers. In: Eshelman [227], pp. 397–404

    Google Scholar 

  150. Colombetti, M., Dorigo, M.: Learning to Control an Autonomous Robot by Distributed Genetic Algorithms. In: Roitblat and Wilson [545], pp. 305–312

    Google Scholar 

  151. Colombetti, M., Dorigo, M.: Robot Shaping: Developing Situated Agents through Learning. Technical Report TR-92-040, International Computer Science Institute, Berkeley,CA (1993)

    Google Scholar 

  152. Colombetti, M., Dorigo, M.: Training Agents to Perform Sequential Behavior. Technical Report TR-93-023, International Computer Science Institute, Berkeley, CA (September 1993)

    Google Scholar 

  153. Colombetti, M., Dorigo, M.: Training agents to perform sequential behavior. Adaptive Behavior 2(3), 247–275 (1994), ftp://iridia.ulb.ac.be/pub/dorigo/journals/IJ.06-ADAP94.ps.gz

  154. Colombetti, M., Dorigo, M.: Verso un’ingegneria del comportamento. Rivistadi Automatica, Elettronica e Informatica 83(10) (1996) (in Italian)

    Google Scholar 

  155. Colombetti, M., Dorigo, M.: Evolutionary Computation in Behavior Engineering. In: Evolutionary Computation: Theory and Applications, ch. 2, pp. 37–80. World Scientific Publishing Co., Singapore (1999), Also Technical Report. TR/IRIDIA/1996-1, IRIDIA, Université Libre de Bruxelles.

    Google Scholar 

  156. Colombetti, M., Dorigo, M., Borghi, G.: Behavior Analysis and Training: A Methodology for Behavior Engineering. IEEE Transactions on Systems, Man and Cybernetics 26(6), 365–380 (1996)

    Google Scholar 

  157. Colombetti, M., Dorigo, M., Borghi, G.: Robot shaping: The HAMSTER Experiment. In: Jamshidi, M., et al. (eds.) Proceedings of ISRAM 1996, Sixth International Symposium on Robotics and Manufacturing, May 28-30, Montpellier, France (1996)

    Google Scholar 

  158. Compiani, M., Montanari, D., Serra, R., Simonini, P.: Asymptotic dynamics of classifier systems. In: Schaffer [563], pp. 298–303

    Google Scholar 

  159. Compiani, M., Montanari, D., Serra, R., Simonini, P.: Learning and Bucket Brigade Dynamics in Classifier Systems. Special issue of Physica D 42 [1], 202–212

    Google Scholar 

  160. Compiani, M., Montanari, D., Serra, R., Valastro, G.: Classifier systems and neural networks. In: Parallel Architectures and Neural Networks-First Italian Workshop, pp. 105–118. World Scientific, Teaneck (1989)

    Google Scholar 

  161. Congdon, C.B.: Classification of epidemiological data: A comparison of genetic algorithm and decision tree approaches. In: Proceedings of the 2000 Congress on Evolutionary Computation (CEC 2000) [3], pp. 442–149 (2000)

    Google Scholar 

  162. Cordón, O., Herrera, F., Herrera-Viedma, E., Lozano, M.: Genetic Algorithms and Fuzzy Logic in Control Processes. Technical Report DECSAI-95109, University of Granada, Granada, Spain (1995)

    Google Scholar 

  163. Cordón, O., Herrera, F., Hoffmann, F., Magdalena, L.: Genetic Fuzzy Systems. World Scientific, Singapore (2001)

    Google Scholar 

  164. Cribbs III, H.B., Smith, R.E.: Classifier System Renaissance: New Analogies, New Directions. In: Koza et al. [425], pp. 547–552

    Google Scholar 

  165. Cribbs III, H.B., Smith, R.E.: What Can I do with a Learning Classifier System? In: Karr, C., Freeman, L.M. (eds.) Industrial Applications of Genetic Algorithms, pp. 299–320. CRC Press, Boca Raton (1998)

    Google Scholar 

  166. Cyre, W.: Learning grammars with a modified classifier system. In: Fogel, D.B., El-Sharkawi, M.A., Yao, X., Greenwood, G., Iba, H., Marrow, P., Shackleton, M. (eds.) Proceedings of the 2002 Congress on Evolutionary Computation CEC 2002, pp. 1366–1371. IEEE Press, Los Alamitos (2002)

    Google Scholar 

  167. Danek, M., Smith, R.E.: XCS applied to mapping FPGA architectures. In: Langdon, W.B., Cantú-Paz, E., Mathias, K., Roy, R., Davis, D., Poli, R., Balakrishnan, K., Honavar, V., Rudolph, G., Wegener, J., Bull, L., Potter, M.A., Schultz, A.C., Miller, J.F., Burke, E., Jonoska, N. (eds.) GECCO 2002: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 912–919. Morgan Kaufmann Publishers, San Francisco (2002)

    Google Scholar 

  168. Dasgupta, D., Gonzalez, F.A.: Evolving complex fuzzy classifier rules using a linear tree genetic representation. In: Spector, L., Goodman, E.D., Wu, A., Langdon, W.B., Voigt, H.-M., Gen, M., Sen, S., Dorigo, M., Pezeshk, S., Garzon, M.H., Burke, E. (eds.) Proceedings ofthe Genetic and Evolutionary Computation Conference (GECCO 2001), San Francisco, California, USA, July 7-11, pp. 299–305. Morgan Kaufmann, San Francisco (2001)

    Google Scholar 

  169. Davidor, Y., Schwefel, H.-P. (eds.): PPSN 1994. LNCS, vol. 866. Springer, Heidelberg (1994)

    Google Scholar 

  170. Davis, L.: Mapping Classifier Systems into Neural Networks. In: Proceedings of the Workshop on Neural Information Processing Systems, vol. 1, pp. 49–56 (1988)

    Google Scholar 

  171. Davis, L. (ed.): Genetic Algorithms and Simulated Annealing. Research Notes in Artificial Intelligence. Pitman Publishing, London (1989)

    Google Scholar 

  172. Davis, L.: Mapping Neural Networks into Classifier Systems. In: Schaffer [563], pp. 375–378

    Google Scholar 

  173. Davis, L.: Covering and Memory in Classifier Systems. In: Collected Abstracts for the First International Workshop on Learning Classifier System (IWLCS 1992) [2], October 6-8. NASA Johnson Space Center, Houston, Texas (1992)

    Google Scholar 

  174. Davis, L., Fu, C., Wilson, S.W.: An incremental multiplexer problem and its uses in classifier system research. In: Lanzi et al. [448], pp. 23–31

    Google Scholar 

  175. Davis, L., Orvosh, D.: The Mating Pool: A Testbed for Experiments in the Evolution of Symbol Systems. In: Eshelman [227], pp. 405–412

    Google Scholar 

  176. Davis, L., Wilson, S.W., Orvosh, D.: Temporary Memory for Examples can Speed Learning in a Simple Adaptive System. In: Roitblat and Wilson [545], pp. 313–320

    Google Scholar 

  177. Davis, L., Young, D.K.: Classifier Systems with Hamming Weights. In: Proceedings of the Fifth International Conference on Machine Learning, pp. 162–173. Morgan Kaufmann, San Francisco (1988)

    Google Scholar 

  178. Dawson, D.: Improving extended classifier system performance in resource-constrained configurations. Master’s thesis, California State University, Chico (2002)

    Google Scholar 

  179. Dawson, D.: Improving performance in size-constrained extended classifier systems. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2724, pp. 1870–1881. Springer, Heidelberg (2003)

    Google Scholar 

  180. Dawson, D., Juliano, B.: Modifying xcs for size-constrained systems. International Journal on Neural and Mass-Parallel Computing and Information Systems (2003)

    Google Scholar 

  181. de Boer, B.: Classifier Systems: a useful approach to machine learning? Master’s thesis, Leiden University (1994), ftp://ftp.wi.leidenuniv.nl/pub/CS/MScTheses/deboer.94.ps.gz

  182. De Jong, K.A.: Learning with Genetic Algorithms: An Overview. Machine Learning 3, 121–138 (1988)

    Google Scholar 

  183. de la Maza, M.: A SEAGUL Visits the Race Track. In: Schaffer [563], pp. 208–212

    Google Scholar 

  184. Derrig, D., Johannes, J.: Deleting End-of-Sequence Classifiers. In: Koza, J.R. (ed.) Late Breaking Papers at the Genetic Programming 1998 Conference, University of Wisconsin, Madison, Wisconsin, USA, July 1998. Stanford University Bookstore (1998)

    Google Scholar 

  185. Derrig, D., Johannes, J.D.: Hierarchical Exemplar Based Credit Allocation for Genetic Classifier Systems. In: Koza et al. [423], pp. 622–628

    Google Scholar 

  186. Desjarlais, L., Forrest, S.: Linked learning in classifier systems: A control architecture for mobile robots. In: Collected Abstracts for the First International Workshop on Learning Classifier System (IWLCS 1992) [2], October 6-8. NASA Johnson Space Center, Houston, Texas (1992)

    Google Scholar 

  187. Determan, J.C., Foster, J.A.: A genetic algorithm for expert system rule generation. In: Spector, L., Goodman, E.D., Wu, A., Langdon, W.B., Voigt, H.-M., Gen, M., Sen, S., Dorigo, M., Pezeshk, S., Garzon, M.H., Burke, E. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2001), San Francisco, California, USA, July 7-11, p. 757. Morgan Kaufmann, San Francisco (2001)

    Google Scholar 

  188. Devine, P., Paton, R., Amos, M.: Adaptation of Evolutionary Agents in Computational Ecologies. In: BCEC 1997, Sweden (1997)

    Google Scholar 

  189. Divina, F., Marchiori, E.: Evolutionary concept learning. In: Lang-don, W.B., Cantu-Paz, E., Mathias, K., Roy, R., Davis, D., Poli, R., Balakrishnan, K., Honavar, V., Rudolph, G., Wegener, J., Bull, L., Potter, M.A., Schultz, A.C., Miller, J.F., Burke, E., Jonoska, N. (eds.) GECCO 2002: Proceedings of the Genetic and Evolutionary Computation Conference, New York, July 9-13, pp. 343–350. Morgan Kaufmann Publishers, San Francisco (2002)

    Google Scholar 

  190. Dixon, P.W., Corne, D.W., Oates, M.J.: A preliminary investigation of modified xcs as a generic data mining tool. In: Lanzi et al. [448], pp. 133–150

    Google Scholar 

  191. Donnart, J.-Y.: Cognitive Architecture and Adaptive Properties of an Motivationally Autonomous Animat. PhD thesis, Université Pierre et Marie Curie. Paris, France (1998)

    Google Scholar 

  192. Donnart, J.-Y., Meyer, J.-A.: A hierarchical classifier system implementing a motivationally autonomous animat. In: Cliff et al. [145], pp. 144–153

    Google Scholar 

  193. Donnart, J.-Y., Meyer, J.-A.: Hierarchical-map Building and Self-positioning with MonaLysa. Adaptive Behavior 5(1), 29–74 (1996)

    Google Scholar 

  194. Donnart, J.-Y., Meyer, J.-A.: Learning Reactive and Planning Rules in a Motivationally Autonomous Animat. IEEE Transactions on Systems, Man and Cybernetics -PartB: Cybernetics 26(3), 381–395 (1996)

    Google Scholar 

  195. Donnart, J.-Y., Meyer, J.-A.: Spatial Exploration, Map Learning, and Self-Positioning with MonaLysa. In: Maes et al. [468], pp. 204–213

    Google Scholar 

  196. Dorigo, M.: Message-Based Bucket Brigade: An Algorithm for the Apportionment of Credit Problem. In: Kodratoff, Y. (ed.) EWSL 1991. LNCS (LNAI), vol. 482, pp. 235–244. Springer, Heidelberg (1991)

    Google Scholar 

  197. Dorigo, M.: New perspectives about default hierarchies formation in learning classifier systems. In: Ardizzone, E., Sorbello, F., Gaglio, S. (eds.) AI*IA 1991. LNCS, vol. 549, pp. 218–227. Springer, Heidelberg (1991)

    Google Scholar 

  198. Dorigo, M.: Using Transputers to Increase Speed and Flexibility of Genetic-based Machine Learning Systems. Microprocessing and Microprogramming 34, 147–152 (1991)

    Google Scholar 

  199. Dorigo, M.: Alecsys and the AutonoMouse: Learning to Control a Real Robot by Distributed Classifier Systems. Technical Report 92-011, Politecnico di Milano (1992)

    Google Scholar 

  200. Dorigo, M.: Optimization, Learning and Natural Algorithms. PhD thesis, Politecnico di Milano, Italy (1992) (in Italian)

    Google Scholar 

  201. Dorigo, M.: Genetic and Non-Genetic Operators in ALECSYS. Evolutionary Computation 1(2), 151–164 (1993); Also Technical Report TR-92-075 International Computer Science Institute

    Google Scholar 

  202. Dorigo, M.: Gli Algoritmi Genetici, i Sistemi a Classificatori e il Problema dell’Animat. Sistemi Intelligenti 3(93), 401–434 (1993) (in Italian)

    Google Scholar 

  203. Dorigo, M.: Alecsys and the AutonoMouse: Learning to Control a Real Robot by Distributed Classifier Systems. Machine Learning 19, 209–240 (1995)

    Google Scholar 

  204. Dorigo, M.: The Robot Shaping Approach to Behavior Engineering. Thése d’Agrégation de l’Enseignement Supérieur, Faculté des Sciences Appliquées, Université Libre de Brux-elles, p.176 (1995)

    Google Scholar 

  205. Dorigo, M., Bersini, H.: A Comparison of Q-Learning and Classifier Systems. In: Cliff et al. [145], pp. 248–255

    Google Scholar 

  206. Dorigo, M., Colombetti, M.: Robot shaping: Developing autonomous agents through learning. Artificial Intelligence 2, 321–370 (1994), ftp://iridia.ulb.ac.be/pub/dorigo/journals/IJ.05-AIJ94.ps.gz

  207. Dorigo, M., Colombetti, M.: The Role of the Trainer in Reinforcement Learning. In: Mahadevan, S., et al. (eds.) Proceedings of MLC-COLT 1994 Workshop on Robot Learning, New Brunswick, NJ, July 10, pp. 37–45 (1994)

    Google Scholar 

  208. Dorigo, M., Colombetti, M.: Precis of Robot Shaping: An Experiment in Behavior Engineering. Special Issue on Complete Agent Learning in Complex Environments, Adaptive Behavior 5(3-4), 391–405 (1997)

    Google Scholar 

  209. Dorigo, M., Colombetti, M.: Reply to Dario Floreano’s Engineering Adaptive Behavior. Special Issue on Complete Agent Learning in Complex Environments, Adaptive Behavior 5(3-4), 417–420 (1997)

    Google Scholar 

  210. Dorigo, M., Colombetti, M.: Robot Shaping: An Experiment in Behavior Engineering. MIT Press/Bradford Books (1998)

    Google Scholar 

  211. Dorigo, M., Maniezzo, V.: Parallel Genetic Algorithms: Introduction and Overview of Current Research. In: Stenders, J. (ed.) Parallel Genetic Algorithms: Theory and Applications, Amsterdam, IOS Press, Amsterdam (1992)

    Google Scholar 

  212. Dorigo, M., Maniezzo, V., Montanari, D.: Classifier-based robot control systems. In: IFAC/IFIP/IMACS International Symposium on Artificial Intelligence in Real-Time Control, Delft, Netherlands, pp. 591–598 (1992)

    Google Scholar 

  213. Dorigo, M., Patel, M.J., Colombetti, M.: The effect of Sensory Information on Reinforcement Learning by a Robot Arm. In: Jamshidi, M., et al. (eds.) Proceedings of ISRAM 1994, Fifth International Symposium on Robotics and Manufacturing, Maui, HI, August 14-18, pp. 83–88. ASME Press, Washington (1994)

    Google Scholar 

  214. Dorigo, M., Schnepf, U.: Organisation of Robot Behaviour Through Genetic Learning Processes. In: Proceedings of ICAR 1991 - Fifth IEEE International Conference on Advanced Robotics, Pisa, Italy, pp. 1456–1460. IEEE Press, Los Alamitos (1991)

    Google Scholar 

  215. Dorigo, M., Schnepf, U.: Genetics-based Machine Learning and Behaviour Based Robotics: A New Synthesis. IEEE Transactions on Systems, Man and Cybernetics 23(1), 141–154 (1993)

    Google Scholar 

  216. Dorigo, M., Sirtori, E.: A Parallel Environment for Learning Systems. In: Proceedings of GAA 1991 - Second Italian Workshop on Machine Learning, Bari, Italy (1991)

    Google Scholar 

  217. Dorigo, M., Sirtori, E.: Alecsys: A Parallel Laboratory for Learning Classifier Systems. In: Booker and Belew [72], pp. 296–302

    Google Scholar 

  218. Druhan, B.B., Mathews, R.C.: THIYOS: A Classifier System Model of Implicit Knowledge in Artificial Grammars. Proc. Ann. Cog. Sci. Soc (1989)

    Google Scholar 

  219. Dumitrescu, D., Lazzerini, B., Jain, L.C., Dumitrescu, A.: Evolutionary Computation. CRC Press International, Boca Raton (2000)

    Google Scholar 

  220. Eckert, D., Mitlohner, J.: Modelling individual and endogenous learning in games: the relevance of classifier systems. In: Complex Modelling for Socio-Economic Systems, SASA, Vienna (1997)

    Google Scholar 

  221. Eckert, D., Mitlöhner, J., Moschner, M.: Evolutionary stability issues and adaptive learning in classifier systems. In: OR 1997 Conference on Operations Research, Vienna (1997)

    Google Scholar 

  222. Enee, G., Escazut, C.: Classifier systems evolving multi-agent system with distributed elitism. In: Angeline et al. [10], pp. 1740–1745

    Google Scholar 

  223. Enee, G., Escazut, C.: A minimal model of communication for a multi-agent classifier system. In: Lanzi et al. [448], pp. 32–42

    Google Scholar 

  224. Escazut, C., Collard, P.: Learning Disjunctive Normal Forms in a Dual Classifier System. In: Lavrač, N., Wrobel, S. (eds.) ECML 1995. LNCS, vol. 912, pp. 271–274. Springer, Heidelberg (1995)

    Google Scholar 

  225. Escazut, C., Collard, P., Cavarero, J.-L.: Dynamic Management of the Specificity in Classifier Systems. In: Albrecht et al. [9], pp. 484–491

    Google Scholar 

  226. Escazut, C., Fogarty, T.C.: Coevolving Classifier Systems to Control Traffic Signals. In: Koza, J.R. (ed.) Late Breaking Papers at the 1997 Genetic Programming Conference, Stanford University, CA, USA, July 1997. Stanford Bookstore (1997)

    Google Scholar 

  227. Eshelman, L.J. (ed.): Proceedings of the 6th International Conference on Genetic Algorithms (ICGA 1995). Morgan Kaufmann Publishers, San Francisco (1995)

    Google Scholar 

  228. Meyer, J.A., et al. (eds.): From Animals to Animats 6: Proceedings of the Sixth International Conference on Simulation of Adaptive Behavior (2000)

    Google Scholar 

  229. Fairley, A., Yates, D.F.: Improving Simple Classifier Systems to alleviate the problems of Duplication, Subsumption and Equivalence of Rules. In: Albrecht et al. [9], pp. 408–416

    Google Scholar 

  230. Fairley, A., Yates, D.F.: Inductive Operators and Rule Repair in a Hybrid Genetic Learning System: Some Initial Results. In: Fogarty [246], pp. 166–179

    Google Scholar 

  231. De Falco, I., Iazzetta, A., Tarantino, E., Della Cioppa, A.: An evolutionary system for automatic explicit rule extraction. In: Proceedings of the 2000 Congress on Evolutionary Computation (CEC 2000) [3], pp. 450–457 (2000)

    Google Scholar 

  232. Falke II, W.J., Ross, P.: Dynamic strategies in a real-time strategy game. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2724, pp. 1920–1921. Springer, Heidelberg (2003)

    Google Scholar 

  233. Doyne Farmer, J.: A Rosetta Stone for Connectionism. Special issue of Physica D 42 [1], 153–187

    Google Scholar 

  234. Doyne Farmer, J., Packard, N.H., Perelson, A.S.: The Immune System, Adaptation & Learning. Physica D 22, 187–204 (1986)

    Google Scholar 

  235. Federman, F.: NEXTNOTE: A Learning Classifier System. In: Wu, A.S. (ed.) Proceedings of the Genetic and Evolutionary Computation Conference Workshop Program, pp. 136–138 (2000)

    Google Scholar 

  236. Federman, F., Dorchak, S.F.: Information Theory and NEXTPITCH: A Learning Classifier System. In: Bäck [14], pp. 442–449

    Google Scholar 

  237. Federman, F., Dorchak, S.F.: Representation of Music in a Learning Classifier System. In: Raś, Z.W., Skowron, A. (eds.) ISMIS 1997. LNCS, vol. 1325. Springer, Heidelberg (1997)

    Google Scholar 

  238. Federman, F., Dorchak, S.F.: A Study of Classifier Length and Population Size. In: Koza et al. [423], pp. 629–634

    Google Scholar 

  239. Federman, F., Sparkman, G., Watt, S.: Representation of Music in a Learning Classifier System Utilizing Bach Chorales. In: Banzhaf et al. [22], pp. 785 (One page poster paper)

    Google Scholar 

  240. Fent, T.: Applications of Learning Classifier Systems for Simulating Learning Organizations. Fortschrittsberichte Simulation, vol. 10. ARGESIM/ASIM-Verlag, Wien (2001)

    Google Scholar 

  241. Ficek, R.: Genetic Algorithms. Technical Report NDSU-CS-TR-90-51, North Dakota State University. Computer Science and Operations Research (1997)

    Google Scholar 

  242. Fidelis, M.V., Lopes, H.S., Freitas, A.A.: Discovering comprehensible classification rules with a genetic algorithm. In: Proceedings of the 2000 Congress on Evolutionary Computation (CEC 2000) [3], pp. 805–810 (2000)

    Google Scholar 

  243. Flake, G.W.: The Computational Beauty of Nature. MIT Press, Cambridge (1998) (Contains a chapter on ZCS)

    Google Scholar 

  244. Fletcher, P.: Simulating the use of ’fiat money’ in a simple commodity economy. Master’s thesis, Schools of Psychology and Computer Science, University of Birmingham (1996)

    Google Scholar 

  245. Fogarty, T.C.: Co-evolving Co-operative Populations of Rules in Learning Control Systems. In: Evolutionary Computing, AISB Workshop Selected Papers [246], pp. 195–209

    Google Scholar 

  246. Fogarty, T.C. (ed.): AISB-WS 1994. LNCS, vol. 865. Springer, Heidelberg (1994)

    Google Scholar 

  247. Fogarty, T.C.: Learning new rules and adapting old ones with the genetic algorithm. In: Rzevski, G. (ed.) Artificial Intelligence in Manufacturing, pp. 275–290. Springer, Heidelberg (1994)

    Google Scholar 

  248. Fogarty, T.C.: Optimising Individual Control Rules and Multiple Communicating Rule-based Control Systems with Parallel Distributed Genetic Algorithms. IEE Journal of Control Theory and Applications 142(3), 211–215 (1995)

    Google Scholar 

  249. Fogarty, T.C., Bull, L., Carse, B.: Evolving Multi-Agent Systems. In: Periaux, J., Winter, G. (eds.) Genetic Algorithms in Engineering and Computer Science, pp. 3–22. John Wiley & Sons, Chichester (1995)

    Google Scholar 

  250. Fogarty, T.C., Carse, B., Bull, L.: Classifier Systems - recent research. AISB Quarterly 89, 48–54 (1994)

    Google Scholar 

  251. Fogarty, T.C., Carse, B., Bull, L.: Classifier Systems: selectionist reinforcement learning, fuzzy rules and communication. Presented at the First International Workshop on Biologically Inspired Evolutionary Systems, Tokyo (1995)

    Google Scholar 

  252. Fogarty, T.C., Carse, B., Munro, A.: Artificial evolution of fuzzy rule bases which represent time: A temporal fuzzy classifier system. International Journal of Intelligent Systems 13(10-11), 906–927 (1998)

    Google Scholar 

  253. Fogarty, T.C., Hercog, L.M.: Social simulation using a multi-agent model based on classifier systems: The emergence of switching agents in the dual pub problem. In: Goodman, E.D. (ed.) 2001 Genetic and Evolutionary Computation Conference Late Breaking Papers, pp. 87–94 (2001)

    Google Scholar 

  254. Fogarty, T.C., Ireson, N.S., Bull, L.: Genetic-based Machine Learning - Applications in Industry and Commerce. In: Rayward-Smith, V. (ed.) Applications of Modern Heuristic Methods, pp. 91–110. Alfred Waller Ltd. (1995)

    Google Scholar 

  255. Fogel, D.B.: Evolutionary Computation. The Fossil Record. Selected Readings on the History of Evolutionary Computation. In: Classifier Systems, ch. 16. IEEE Press, Los Alamitos (1998); This is a reprint of (Holland and Reitman) with an added introduction by Fogel (1978)

    Google Scholar 

  256. Forrest, S.: A study of parallelism in the classifier system and its application to classification in KL-ONE semantic networks. PhD thesis, University of Michigan, Ann Arbor, MI (1985)

    Google Scholar 

  257. Forrest, S.: Implementing semantic network structures using the classifier system. In: Grefenstette [305], pp. 24–44

    Google Scholar 

  258. Forrest, S.: The Classifier System: A Computational Model that Supports Machine Intelligence. In: International Conference on Parallel Processing, Los Alamitos, Ca., USA, pp. 711–716. IEEE Computer Society Press, Los Alamitos (1986)

    Google Scholar 

  259. Forrest, S.: Parallelism and Programming in Classifier Systems. Pittman, London (1991)

    Google Scholar 

  260. Forrest, S. (ed.): Proceedings of the 5th International Conference on Genetic Algorithms (ICGA 1993). Morgan Kaufmann, San Francisco (1993)

    Google Scholar 

  261. Forrest, S., Miller, J.H.: Emergent behavior in classifier systems. Special issue of Physica D 42 [1], 213–217

    Google Scholar 

  262. Forrest, S., Smith, R.E., Perelson, A.: Maintaining diversity with a genetic algorithm. In: Collected Abstracts for the First International Workshop on Learning Classifier System (IWLCS 1992) [2], October 6-8. NASA Johnson Space Center, Houston, Texas (1992)

    Google Scholar 

  263. Forsyth, R.: Machine Learning: Applications in expert systems and information retrival, chapter Evolutionary Learning Strategies, pp. 78–95. Ellis Horwood Limited (1986)

    Google Scholar 

  264. Frey, P.W., Slate, D.J.: Letter Recognition Using Holland-Style Adaptive Classifiers. Machine Learning 6, 161–182 (1991)

    Google Scholar 

  265. Fu, C., Davis, L.: A modified classifier system compaction algorithm. In: Langdon, W.B., Cantu-Paz, E., Mathias, K., Roy, R., Davis, D., Poli, R., Balakrishnan, K., Honavar, V., Rudolph, G., Wegener, J., Bull, L., Potter, M.A., Schultz, A.C., Miller, J.F., Burke, E., Jonoska, N. (eds.) GECCO 2002: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 920–925. Morgan Kaufmann Publishers, San Francisco (2002)

    Google Scholar 

  266. Fu, C., Wilson, S.W., Davis, L.: Studies of the xcsi classifier system on a data mining problem. In: Spector, L., Goodman, E.D., Wu, A., Langdon, W.B., Voigt, H.-M., Gen, M., Sen, S., Dorigo, M., Pezeshk, S., Garzon, M.H., Burke, E. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2001), San Francisco, California, USA, July 7-11, p. 985. Morgan Kaufmann, San Francisco (2001)

    Google Scholar 

  267. Fu, L.L.: The XCS Classifier System and Q-learning. In: Koza, J.R. (ed.) Late Breaking Papers at the Genetic Programming 1998 Conference, University of Wisconsin, Madison, Wisconsin, USA, Stanford University Bookstore (1998)

    Google Scholar 

  268. Fu, L.L.: What I have come to understand about classifier systems (1998), Unpublished document. Dept. of Electrical Engineering and Computer Science. University of Michigan

    Google Scholar 

  269. Furuhashi, T.: A Proposal of Hierarchical Fuzzy Classifier Systems. In: Forrest [260]

    Google Scholar 

  270. Furuhashi, T., Nakaoka, K., Morikawa, K., Uchikawa, Y.: Controlling Excessive Fuzziness in a Fuzzy Classifier System. In: Forrest [260], pp. 635–635

    Google Scholar 

  271. Furuhashi, T., Nakaoka, K., Uchikawa, Y.: A Study on Fuzzy Classifier System for Finding Control Knowledge of Multi-Input Systems. In: Herrera and Verdegay [336], pp. 489–502

    Google Scholar 

  272. Galea, M., Shen, Q.: Evolutionary approaches to fuzzy rule induction. In: Rossiter, J.M., Martin, T.P. (eds.) Proceedings of the 2003 UK Workshop on Computational Intelligence (UKCI 2003), pp. 205–216 (2003)

    Google Scholar 

  273. Garcia, S., Gonzalez, F., Sanchez, L.: Evolving Fuzzy Rule Based Classifiers with GAP: A Grammatical Approach. In: Langdon, W.B., Fogarty, T.C., Nordin, P., Poli, R. (eds.) EuroGP 1999. LNCS, vol. 1598, pp. 203–210. Springer, Heidelberg (1999)

    Google Scholar 

  274. Gathercole, C.: A Classifier System Plays a Simple Board Game. Master’s thesis, Department of AI, University of Edinburgh, U.K.(1993)

    Google Scholar 

  275. Gerard, P., Sigaud, O.: Combining Anticipation and Dynamic Programming in Classifier Systems. In: Proceedings of the International Workshop on Learning Classifier Systems (IWLCS 2000), in the Joint Workshops of SAB 2000 and PPSN 2000 [4] (2000) (Extended abstract)

    Google Scholar 

  276. Gerard, P., Sigaud, O.: Adding a generalization mechanism to YACS. In: Spector, L., Goodman, E.D., Wu, A., Langdon, W.B., Voigt, H.-M., Gen, M., Sen, S., Dorigo, M., Pezeshk, S., Garzon, M.H., Burke, E. (eds.) Proceedings ofthe Genetic and Evolutionary Computation Conference (GECCO 2001), San Francisco, California, USA, July 7-11, pp. 951–957. Morgan Kaufmann, San Francisco (2001)

    Google Scholar 

  277. Gerard, P., Sigaud, O.: YACS: Combining dynamic programming with generalization in classifier systems. In: Lanzi, P.L., Stolzmann, W., Wilson, S.W. (eds.) IWLCS 2000. LNCS (LNAI), vol. 1996, pp. 52–69. Springer, Heidelberg (2001)

    Google Scholar 

  278. Gérard, P., Sigaud, O.: Designing efficient exploration with MACS: Modules and function approximation. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2724, pp. 1882–1893. Springer, Heidelberg (2003)

    Google Scholar 

  279. Gerard, P., Stolzmann, W., Sigaud, O.: YACS, a new LCS using anticipation. Journal of Soft Computing 6(3-4), 216–228 (2002)

    Google Scholar 

  280. Geyer-Schulz, A.: Fuzzy Classifier Systems. In: Lowen, R., Roubens, M. (eds.) Fuzzy Logic: State of the Art, Dordrecht. Series D: System Theory, Knowledge Engineering and Problem Solving, pp. 345–354. Kluwer Academic Publishers, Dordrecht (1993)

    Google Scholar 

  281. Geyer-Schulz, A.: Fuzzy Rule-Based Expert Systems and Genetic Machine Learning. Physica Verlag, Heidelberg (1995); Book review at http://www.apl.demon.co.uk/aplandj/fuzzy.htm (2nd edn appeared in 1997)

  282. Geyer-Schulz, A.: Holland Classifier Systems. In: Proceedings of the International Conference on APL (APL 1995), New York, NY, USA, vol. 25, pp. 43–55. ACM Press, New York (1995)

    Google Scholar 

  283. Giani, A.: A Study of Parallel Cooperative Classifier Systems. In: Koza, J.R. (ed.) Late Breaking Papers at the Genetic Programming 1998 Conference, University of Wisconsin, Madison, Wisconsin, USA. Stanford University Bookstore (July 1998)

    Google Scholar 

  284. Giani, A., Baiardi, F., Starita, A.: Q-Learning in Evolutionary Rule-Based Systems. In: Davidor and Schwefel [169], pp. 270–289

    Google Scholar 

  285. Giani, A., Baiardi, F., Starita, A.: PANIC: A parallel evolutionary rule based system. In: McDonnell, J.R., Reynolds, R.G., Fogel, D.B. (eds.) Evolutionary Programming IV. Proceedings of the Fourth Annual Conference on Evolutionary Programming, pp. 753–771 (1995)

    Google Scholar 

  286. Giani, A., Sticca, A., Baiardi, F., Starita, A.: Q-learning and Redundancy Reduction in Classifier Systems with Internal State. In: Nédellec, C., Rouveirol, C. (eds.) ECML 1998. LNCS, vol. 1398, pp. 364–369. Springer, Heidelberg (1998)

    Google Scholar 

  287. Gilbert, A.H., Bell, F., Valenzuela, C.L.: Adaptive Learning of Process Control and Profit Optimisation using a Classifier System. Evolutionary Computation 3(2), 177–198 (1995)

    Google Scholar 

  288. Giordana, A., Bello, G.L.: Learning classification programs: The genetic algorithm approach. In: Eiben, A.E., Michalewicz, Z. (eds.) Evolutionary Computation, pp. 163–177. IOS Press, Amsterdam (1999)

    Google Scholar 

  289. Giordana, A., Neri, F.: Search-Intensive Concept Induction. Evolutionary Computation 3, 375–416 (1995)

    Google Scholar 

  290. Giordana, A., Saitta, L.: REGAL: An integrated system for learning relations using genetic algorithms. In: Proc. 2nd International Workshop on Multistrategy Learning, pp. 234–249 (1993)

    Google Scholar 

  291. Giordana, A., Saitta, L.: Learning disjunctive concepts by means of genetic algorithms. In: Proc. Int. Conf. on Machine Learning, pp. 96–104 (1994)

    Google Scholar 

  292. Goldberg, D.E.: Computer-Aided Gas Pipeline Operation using Genetic Algorithms and Rule Learning. PhD thesis, The University of Michigan (1983)

    Google Scholar 

  293. Goldberg, D.E.: Dynamic System Control using Rule Learning and Genetic Algorithms. In: Proceedings of the 9th International Joint Conference on Artificial Intelligence (IJCAI 1985), pp. 588–592. Morgan Kaufmann, San Francisco (1985)

    Google Scholar 

  294. Goldberg, D.E.: Genetic algorithms and rules learning in dynamic system control. In: Grefenstette [305], pp. 8–15

    Google Scholar 

  295. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading (1989)

    Google Scholar 

  296. Goldberg, D.E.: Probability Matching, the Magnitude of Reinforcement, and Classifier System Bidding. Machine Learning 5, 407-425 (1990), Also TCGA tech report 88002, U. of Alabama

    Google Scholar 

  297. Goldberg, D.E.: Some Reflections on Learning Classifier Systems. Technical Report 2000009, Illinois Genetic Algorithms Laboratory, University of Illinois at Urbana-Champaign (2000), This appeared as part of Holland (2000a)

    Google Scholar 

  298. Goldberg, D.E., Horn, J., Deb, K.: What Makes a Problem Hard for a Classifier System? In: Collected Abstracts for the First International Workshop on Learning Classifier System (IWLCS 1992) [2] (1992), Also technical report 92007 Illinois Genetic Algorithms Laboratory, University of Illinois at Urbana-Champaign, Available from ENCORE ftp://ftp.krl.caltech.edu/pub/EC/Welcome.html in the section on Classifier Systems

  299. Goldsmith, S.Y.: Steady state analysis of a simple classifier system. PhD thesis, University of New Mexico, Albuquerque, USA (1989)

    Google Scholar 

  300. Goodman, E.G., Uskov, V.L., Punch, W.F. (eds.): Proceedings of the First International Conference on Evolutionary Algorithms and their Application EVCA 1996, Moscow (1996), The Presidium of the Russian Academy of Sciences

    Google Scholar 

  301. Greene, D.P., Smith, S.F.: COGIN: Symbolic induction using genetic algorithms. In: Proceedings 10th National Conference on Artificial Intelligence, pp. 111–116. Morgan Kaufmann, San Francisco (1992)

    Google Scholar 

  302. Greene, D.P., Smith, S.F.: Competition-based induction of decision models from examples. Machine Learning 13, 229–257 (1993)

    Google Scholar 

  303. Greene, D.P., Smith, S.F.: Using Coverage as a Model Building Constraint in Learning Classifier Systems. Evolutionary Computation 2(1), 67–91 (1994)

    Google Scholar 

  304. Greenyer, A.: The use of a learning classifier system JXCS. In: van der Putten, P., van Someren, M. (eds.) CoIL Challenge 2000: The Insurance Company Case, Leiden Institute of Advanced Computer Science (June 2000), Technical report 2000-09

    Google Scholar 

  305. Grefenstette, J.J. (ed.): Proceedings of the 1st International Conference on Genetic Algorithms and their Applications (ICGA 1985). Lawrence Erlbaum Associates, Pittsburgh (1985)

    Google Scholar 

  306. Grefenstette, J.J.: Multilevel Credit Assignment in a Genetic Learning System. In: Proceedings of the 2nd International Conference on Genetic Algorithms (ICGA 1987) [307], pp. 202–207 (1987)

    Google Scholar 

  307. Grefenstette, J.J. (ed.): Proceedings of the 2nd International Conference on Genetic Algorithms (ICGA 1987), Cambridge, MA. Lawrence Erlbaum Associates, Mahwah (1987)

    Google Scholar 

  308. Grefenstette, J.J.: Credit Assignment in Rule Discovery Systems Based on Genetic Algorithms. Machine Learning 3, 225–245 (1988)

    Google Scholar 

  309. Grefenstette, J.J.: A System for Learning Control Strategies with Genetic Algorithms. In: Schaffer [563], pp. 183–190

    Google Scholar 

  310. Grefenstette, J.J.: Lamarckian Learning in Multi-Agent Environments. In: Booker and Belew [72], pp. 303-310, http://www.ib3.gmu.edu/gref/publications.html

  311. Grefenstette, J.J.: Learning decision strategies with genetic algorithms. In: Jantke, K.P. (ed.) AII 1992. LNCS, vol. 642, pp. 35–50. Springer, Heidelberg (1992), http://www.ib3.gmu.edu/gref/

  312. Grefenstette, J.J.: The Evolution of Strategies for Multi-agent Environments. Adaptive Behavior 1, 65–89 (1992), http://www.ib3.gmu.edu/gref/

  313. Grefenstette, J.J.: Using a genetic algorithm to learn behaviors for autonomous vehicles. In: Proceedings American Institute of Aeronautics and Astronautics Guidance, Navigation and Control Conference, pp. 739–749. AIAA (1992), http://www.ib3.gmu.edu/gref/

  314. Grefenstette, J.J.: Evolutionary Algorithms in Robotics. In: Jamshedi, M., Nguyen, C. (eds.) Robotics and Manufacturing: Recent Trends in Research, Education and Applications, Proc. Fifth Intl. Symposium on Robotics and Manufacturing, ISRAM 1994, vol. 5, pp. 65–72. ASME Press, New York (1994), http://www.ib3.gmu.edu/gref/

  315. Grefenstette, J.J., Cobb, H.G.: User’s guide for SAMUEL, Version 1.3. Technical Report NRL Memorandum Report 6820, Naval Research Laboratory (1991)

    Google Scholar 

  316. Grefenstette, J.J., Ramsey, C.L., Schultz, A.C.: Learning Sequential Decision Rules using Simulation Models and Competition. Machine Learning 5(4), 355–381 (1990), http://www.ib3.gmu.edu/gref/publications.html

  317. Grefenstette, J.J., Schultz, A.C.: An evolutionary approach to learning in robots. In: Machine Learning Workshop on Robot Learning, New Brunswick, NJ (1994), http://www.ib3.gmu.edu/gref/

  318. Nakashima, T., Ishibuchi, H., Kuroda, T.: A fuzzy genetics-based machine learning method for designing linguistic classification systems with high comprehensibility. In: Proceedings 6th Int. Conf. on Neural Information Processing, vol. 2, pp. 597–602 (1999)

    Google Scholar 

  319. Nakashima, T., Ishibuchi, H., Kuroda, T.: A hybrid fuzzy gbml algorithm for designing compact fuzzy rule-based classification systems. In: Proc. 9th IEEE Int. Conf. on Fuzzy Systems (FUZZ IEEE 2000), vol. 2, pp. 706–711 (2000)

    Google Scholar 

  320. Nakashima, T., Ishibuchi, H., Murata, T.: Genetic-algorithm-based approaches to the design of fuzzy systems for multi-dimensional pattern classification problems. In: Proc. 1996 IEEE Int. conf. on Evolutionary Computation, pp. 229–234 (1996)

    Google Scholar 

  321. Nakashima, T., Ishibuchi, H., Murata, T.: Performance evaluation of fuzzy classifier systems for multidimensional pattern classification problems. IEEE Transactions on Systems, Man and Cybernetics, Part B 29(5), 601–618 (1999)

    Google Scholar 

  322. Handa, H., Noda, T., Konishi, T., Katai, O., Baba, M.: Coevo-lutionary fuzzy classifier system for autonomous mobile robots. In: Takadama [640]

    Google Scholar 

  323. Hartley, A.: Genetics Based Machine Learning as a Model of Perceptual Category Learning in Humans. Master’s thesis, University of Birmingham (1998), ftp://ftp.cs.bham.ac.uk/pub/authors/T.Kovacs/index.html

  324. Hartley, A.: Accuracy-based fitness allows similar performance to humans in static and dynamic classification environments. In: Banzhaf et al. [22], pp. 266–273

    Google Scholar 

  325. Hartmann, U.: Efficient Parallel Learning in Classifier Systems. In: Albrecht et al. [9], pp. 515–521

    Google Scholar 

  326. Hartmann, U.: On the Complexity of Learning in Classifier Systems. In: Davidor and Schwefel [169], pp. 280-289; Republished in: Cohn, A. (ed.): ECAI 1994. 11th European Conference on Artificial Intelligence., pp. 438–442. John Wiley and Sons, Chichester (1994)

    Google Scholar 

  327. Haslev, M.: A Classifier System for the Production by Computer of Past Tense Verb-Form. Presented at a Genetic Algorithms Workshop at the Rowland Institute, Cambridge, MA (November 1986)

    Google Scholar 

  328. Hasse, M., Pozo, A.R.: Using Phenotypic Sharing in a Classifier Tool. In: Whitely et al. [699], pp. 392 (One page poster paper)

    Google Scholar 

  329. Hayashi, A., Suematsu, N.: Viewing Classifier Systems as Model Free Learning in POMDPs. Advances in Neural Information Processing Systems (NIPS) 11, 989–995 (1999)

    Google Scholar 

  330. Hercog, L.M.: Hand-eye coordination: An evolutionary approach. Master’s thesis, Department of Artificial Intelligence. University of Edinburgh (1998)

    Google Scholar 

  331. Hercog, L.M., Fogarty, T.C.: XCS-based inductive intelligent multi-agent system. In: Late Breaking Papers at the 2000 Genetic and Evolutionary Computation Conference (GECCO 2000), pp. 125–132 (2000)

    Google Scholar 

  332. Hercog, L.M., Fogarty, T.C.: XCS-based Inductive Multi-Agent System. In: Proceedings of the International Workshop on Learning Classifier Systems (IWLCS 2000), in the Joint Workshops of SAB 2000 and PPSN 2000 [4] (2000) (Extended abstract)

    Google Scholar 

  333. Hercog, L.M., Fogarty, T.C.: Analysis of inductive intelligence in xcs-based multi-agent system (maxcs). In: Periaux, J., Joly, P., Onate, E. (eds.) Innovative Tools for Scientific Computation in Aeronautical Engineering, pp. 351–366. CIMNE, Barcelona (2001) ISBN: 84-90025-78-X

    Google Scholar 

  334. Hercog, L.M., Fogarty, T.C.: Co-evolutionary classifier systems for multi-agent simulation. In: Fogel, D.B., El-Sharkawi, M.A., Yao, X., Greenwood, G., Iba, H., Marrow, P., Shackleton, M. (eds.) Proceedings of the 2002 Congress on Evolutionary Computation CEC 2002, pp. 1798–1803. IEEE Press, Los Alamitos (2002)

    Google Scholar 

  335. Hercog, L.M., Fogarty, T.C.: Social simulation using a Multi-Agent Model based on Classifier Systems: The Emergence of Vacillating Behaviour in the “El Farol” Bar Problem. In: Lanzi et al. [448], pp. 88–111

    Google Scholar 

  336. Herrera, F., Verdegay, J.L. (eds.): Genetic Algorithms and Soft Computing (Studies in Fuzziness), vol. 8. Physica-Verlag, Berlin (1996)

    Google Scholar 

  337. Herrera-Viedma, E.: Sistemas Clasificadores de Aprendizaje. Aproximaciones Difusas. Technical Report DECSAI-95132, Dept. of Computer Science and A.I., University of Granada (1995)

    Google Scholar 

  338. Hilliard, M.R., Liepins, G.E.: Mark Palmer, Michael Morrow, and Jon Richardson. A classifier based system for discovering scheduling heuristics. In: Grefenstette [307], pp. 231–235

    Google Scholar 

  339. Holland, J.H.: Processing and processors for schemata. In: Jacks, E.L. (ed.) Associative Information Processing, pp. 127–146. American Elsevier, New York (1971)

    Google Scholar 

  340. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor (1975); Republished by the MIT press (1992)

    Google Scholar 

  341. Holland, J.H.: Adaptation. In: Rosen, R., Snell, F.M. (eds.) Progress in Theoretical Biology. Plenum, New York (1976)

    Google Scholar 

  342. Holland, J.H.: Adaptive algorithms for discovering and using general patterns in growing knowledge bases. International Journal of Policy Analysis and Information Systems 4(3), 245–268 (1980)

    Google Scholar 

  343. Holland, J.H.: Genetic Algorithms and Adaptation. Technical Report 34, University of Michigan. Department of Computerand Communication Sciences, Ann Arbor (1981)

    Google Scholar 

  344. Holland, J.H.: Escaping brittleness. In: Proceedings Second International Workshop on Machine Learning, pp. 92–95 (1983)

    Google Scholar 

  345. Holland, J.H.: Properties of the bucket brigade. In: Grefenstette [305], pp. 1–7

    Google Scholar 

  346. Holland, J.H.: A Mathematical Framework for Studying Learning in a Classifier System. In: Farmer, D., Lapedes, A., Packard, N., Wendroff, B. (eds.) Evolution, Games and Learning: Models for Adaptation in Machines and Nature, Amsterdam, pp. 307–317. North-Holland, Amsterdam (1986)

    Google Scholar 

  347. Holland, J.H.: A Mathematical Framework for Studying Learning in Classifier Systems. Physica D 22, 307–317 (1986)

    Google Scholar 

  348. Holland, J.H.: Escaping Brittleness: The Possibilities of General-Purpose Learning Algorithms Applied to Parallel Rule-Based Systems. In: Mitchell, Michalski, Carbonell (eds.) Machine Learning, an Artificial Intelligence Approach, ch. 20, vol. II, pp. 593–623. Morgan Kaufmann, San Francisco (1986)

    Google Scholar 

  349. Holland, J.H.: Genetic Algorithms and Classifier Systems: Foundations and Future Directions. In: Grefenstette [307], pp. 82–89

    Google Scholar 

  350. Holland, J.H.: Concerning the Emergence of Tag-Mediated Lookahead in Classifier Systems. Special issue of Physica D [1] 42, 188–201

    Google Scholar 

  351. Holland, J.H., Booker, L.B., Colombetti, M., Dorigo, M., Goldberg, D.E., Forrest, S., Riolo, R.L., Smith, R.E., Lanzi, P.L., Stolzmann, W., Wilson, S.W.: What is a Learning Classifier System? In: Lanzi et al. [446], pp. 3–32

    Google Scholar 

  352. Holland, J.H., Burks, A.W.: Adaptive Computing System Capable of Learning and Discovery. Patent 4697242 United States 29 (September 1987)

    Google Scholar 

  353. Holland, J.H., Holyoak, K.J., Nisbett, R.E., Thagard, P.R.: Induction: Processes of Inference, Learning, and Discovery. MIT Press, Cambridge (1986)

    Google Scholar 

  354. Holland, J.H., Holyoak, K.J., Nisbett, R.E., Thagard, P.R.: Classifier Systems, Q-Morphisms, and Induction. In: Davis [171], pp. 116–128

    Google Scholar 

  355. Holland, J.H., Reitman, J.S.: Cognitive systems based on adaptive algorithms. In: Waterman, D.A., Hayes-Roth, F. (eds.) Pattern-directed Inference Systems, Academic Press, New York (1978); Reprinted in: Fogel, D.B. (ed.): Evolutionary Computation. The Fossil Record. IEEE Press, Los Alamitos (1998) ISBN: 0-7803-3481-7

    Google Scholar 

  356. Holmes, J.H.: Evolution-Assisted Discovery ofSentinel Features in Epidemiologic Surveillance. PhD thesis, Drexel University (1996), http://cceb.med.upenn.edu/holmes/disstxt.ps.gz

  357. Holmes, J.H.: A genetics-based machine learning approach to knowledge discovery in clinical data. Journal of the American Medical Informatics Association Supplement (1996)

    Google Scholar 

  358. Holmes, J.H.: Discovering Risk of Disease with a Learning Classifier System. In: Bäck [14], http://cceb.med.upenn.edu/holmes/icga97.ps.gz

  359. Holmes, J.H.: Differential negative reinforcement improves classifier system learning rate in two-class problems with unequal base rates. In: Koza et al. [423], pp. 635–642, http://cceb.med.upenn.edu/holmes/gp98.ps.gz

  360. Holmes, J.H.: Evaluating Learning Classifier System Performanc in Two-Choice Decision Tasks: An LCS Metric Toolkit. In: Banzhaf et al. [22], pp. 789 (One page poster paper)

    Google Scholar 

  361. Holmes, J.H.: Quantitative Methods for Evaluating Learning Classifier System Performance in Forced Two-Choice Decision Tasks. In: Wu [739], pp. 250–257

    Google Scholar 

  362. Holmes, J.H.: Applying a Learning Classifier System to Mining Explanatory and Predictive Models from a Large Database. In: Proceedings of the International Workshop on Learning Classifier Systems (IWLCS 2000), in the Joint Workshops of SAB 2000 and PPSN 2000 [4] (2000) (Extended abstract)

    Google Scholar 

  363. Holmes, J.H.: Learning Classifier Systems Applied to Knowledge Discovery in Clinical Research Databases. In: Lanzi et al. [446], pp. 243–261

    Google Scholar 

  364. Holmes, J.H.: A representation for accuracy-based assessment of classifier system prediction performance. In: Lanzi et al. [448], pp. 43–56

    Google Scholar 

  365. Holmes, J.H., Durbin, D.R., Winston, F.K.: A New Bootstrapping Method to Improve Classification Performance in Learning Classifier Systems. In: Deb, K., Rudolph, G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X. (eds.) PPSN 2000. LNCS, vol. 1917. Springer, Heidelberg (2000)

    Google Scholar 

  366. Holmes, J.H., Durbin, D.R., Winston, F.K.: The learning classifier system: an evolutionary computation approach to knowledge discovery in epidemiologic surveillance. Artificial Intelligence In Medicine 19(1), 53–74 (2000)

    Google Scholar 

  367. Holyoak, K.J., Koh, K., Nisbett, R.E.: A Theory of Conditioning: Inductive Learning within Rule-Based Default Hierarchies. Psych. Review 96, 315–340 (1990)

    Google Scholar 

  368. Horn, J.: The Nature of Niching: Genetic Algorithms and the Evolution of Optimal, Cooperative Populations. PhD thesis, University of Illinois at Urbana-Champaign (UMI Dissertation Service No. 9812622 (1997)

    Google Scholar 

  369. Horn, J., Goldberg, D.E.: Natural Niching for Cooperative Learning in Classifier Systems. In: Koza et al. [425], pp. 553–564

    Google Scholar 

  370. Horn, J., Goldberg, D.E.: A Timing Analysis of Convergence to Fitness Sharing Equilibrium. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, p. 23. Springer, Heidelberg (1998)

    Google Scholar 

  371. Horn, J., Goldberg, D.E.: Towards a Control Map for Niching. In: Foundations of Genetic Algorithms (FOGA), pp. 287–310 (1998)

    Google Scholar 

  372. Horn, J., Goldberg, D.E., Deb, K.: Implicit Niching in a Learning Classifier System: Nature’s Way. Evolutionary Computation 2(1), 37–66 (1994), Also IlliGAL Report No 94001 (1994)

    Google Scholar 

  373. Huang, D.: A framework for the credit-apportionment process in rule-based systems. IEEE Transactions on Systems, Man and Cybernetics (1989)

    Google Scholar 

  374. Huang, D.: Credit Apportionment in Rule-Based Systems: Problem Analysis and Algorithm Synthesis. PhD thesis, University of Michigan (1989)

    Google Scholar 

  375. Huang, D.: The Context-Array Bucket-Brigade Algorithm: An Enhanced Approach to Credit-Apportionment in Classifier Systems. In: Schaffer [563], pp. 311–316

    Google Scholar 

  376. Hurst, J., Bull, L.: A Self-Adaptive Classifier System. In: Proceedings of the International Workshop on Learning Classifier Systems (IWLCS 2000), in the Joint Workshops of SAB 2000 and PPSN 2000 [4] (2000)(Extended abstract)

    Google Scholar 

  377. Hurst, J., Bull, L.: A Self-Adaptive XCS. In: Lanzi et al. [448], pp. 57–73

    Google Scholar 

  378. Llorà i Fàbrega, F.X.: Automatic Classification using genetic algorithms under a Pittsburgh approach. Master’s thesis, Enginyeria La Salle - Ramon Llull University (1998), http://www.salleurl.edu/~xevil/Work/index.html

  379. Llorà i Fàbrega, F.X., Garrell i Guiu, J.M.: GENIFER: A Nearest Neighbour based Classifier System using GA. In: Banzhaf et al. [22], pp. 797 (One page poster paper appeared at GECCO), The full version is available at http://www.salleurl.edu/~xevil/Work/index.html

  380. Llorà i Fàbrega, F.X., Garrell i Guiu, J.M., Bernadó i Mansilla, E.: A Classifier System based on Genetic Algorithm under the Pittsburgh approach for problems with real valued attributes. In: Torra, V. (ed.) Proceedings of Artificial Intelligence Catalan Workshop (CCIA 1998), vol. 14-15, pp. 85–93. ACIA Press (1998), In Catalan http://www.salleurl.edu/~xevil/Work/index.html

  381. Garrell i Guiu, J.M., Golobardes i Ribé, E., Bernadó i Mansilla, E., Llorà i Fàbrega, F.X.: Automatic Classification of mammary biopsy images with machine learning techniques. In: Alpaydin, E. (ed.) Proceedings of Engineering of Intelligent Systems (EIS 1998), vol. 3, pp. 411–418. ICSC Academic Press, London (1998), http://www.salleurl.edu/~xevil/Work/index.html

  382. Garrell i Guiu, J.M., Golobardes i Ribé, E., Bernadó i Mansilla, E., Llorà i Fàbrega, F.X.: Automatic Diagnosis with Genetic Algorithms and Case-Based Reasoning. To appear in AIENG Journal (1999); This is an expanded version of Guiu (1998a)

    Google Scholar 

  383. Iba, H., de Garis, H., Higuchi, T.: Evolutionary Learning of Predatory Behaviors Based on Structured Classifiers. In: Roitblat and Wilson [545], pp. 356–363

    Google Scholar 

  384. Inoue, H., Takadama, K., Okada, M., Shimohara, K., Katai, O.: Agent architecture based on self-reflection learning classifier system. In: The 5th International Symposium on Artificial Life and Robotics (AROB 2000), pp. 454–457 (2000)

    Google Scholar 

  385. Inoue, H., Takadama, K., Shimohara, K.: Inference of user’s internal states and its agent’s architecture. In: The 20th System Engineering Meeting of SICE (The Society of Instrument and Control Engineers), pp. 55–60 (2000)

    Google Scholar 

  386. Ireson, N., Cao, Y.J., Bull, L., Miles, R.: A Communication Architecture for Multi-Agent Learning Systems. In: Oates, M.J., Lanzi, P.L., Li, Y., Cagnoni, S., Corne, D.W., Fogarty, T.C., Poli, R., Smith, G.D. (eds.) EvoIASP 2000, EvoWorkshops 2000, EvoFlight 2000, EvoSCONDI 2000, EvoSTIM 2000, EvoTEL 2000, and EvoROB/EvoRobot 2000. LNCS, vol. 1803, pp. 255–266. Springer, Heidelberg (2000)

    Google Scholar 

  387. Ishibuchi, H., Nakashima, T.: Linguistic Rule Extraction by Genetics-Based Machine Learning. In: Whitely et al. [699], pp. 195–202

    Google Scholar 

  388. Ishibuchi, H., Yamamoto, T.: Fuzzy rule selection by data mining criteria and genetic algorithms. In: Langdon, W.B., Cantu-Paz, E., Mathias, K., Roy, R., Davis, D., Poli, R., Balakrishnan, K., Honavar, V., Rudolph, G., Wegener, J., Bull, L., Potter, M.A., Schultz, A.C., Miller, J.F., Burke, E., Jonoska, N. (eds.) GECCO 2002: Proceedings of the Genetic and Evolutionary Computation Conference, New York, July 9-13, pp. 399–406. Morgan Kaufmann Publishers, San Francisco (2002)

    Google Scholar 

  389. Ishikawa, Y., Terano, T.: Co-evolution of multiagents via organizational-learning classifier system and its application to marketing simulation. In: Proc. 4th Pacific-Asia Conf. on Information Systems ( PACIS 2000), pp. 1114–1127 (2000)

    Google Scholar 

  390. Hurst, J., Bull, L., Melhuish, C.: TCS learning classifier system controller on a real robot. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, p. 588. Springer, Heidelberg (2002)

    Google Scholar 

  391. De Jong, K.A., Spears, W.M.: Learning Concept Classification Rules using Genetic Algorithms. In: Proceedings of the Twelfth International Conference on Artificial Intelligence IJCAI 1991, vol. 2 (1991)

    Google Scholar 

  392. Takadama, K., Terano, T., Shimohara, K., Hori, K., Nakasuka, S.: Towards a multiagent design principle - analyzing an organizational-learning oriented classifier system. In: Loia, V., Sessa, S. (eds.) Soft Computing Agents: New Trends for Designing Autonomous Systems. Series of Studies in Fuzziness and Soft Computing. Springer, Heidelberg (2001)

    Google Scholar 

  393. Katagami, D., Yamada, S.: Real robot learning with human teaching. In: Takadama [640]

    Google Scholar 

  394. Kawanaka, H., Yoshikawa, T., Tsuruoka, S.: A Study of Parallel GA Using DNA Coding Method for Acquisition of Fuzzy Control Rules. In: Late Breaking Papers at the 2000 Genetic and Evolutionary Computation Conference (GECCO 2000), pp. 431–436 (2000)

    Google Scholar 

  395. Kim, Y.-J., Eick, C.F.: Multi-rule-set decision-making schemes for a genetic algorithm learning environment for classification tasks. In: McDonnell, J.R., Reynolds, R.G., Fogel, D.B. (eds.) Evolutionary Programming IV. Proceedings ofthe Fourth Annual Conference on Evolutionary Programming, pp. 773–788 (1995)

    Google Scholar 

  396. Kitano, H., Smith, S.F., Higuchi, T.: GA-1: A Parallel Associative Memory Processor for Rule Learning with Genetic Algorithms. In: Booker and Belew [72], pp. 311–317

    Google Scholar 

  397. Knight, L., Sen, S.: PLEASE: A Prototype Learning System using Genetic Algorithms. In: Eshelman [227], pp. 429–435

    Google Scholar 

  398. Kokai, G., Tóth, Z., Zvada, S.: An experimental comparison of genetic and classical concept learning methods. In: Langdon, W.B., Cantú-Paz, E., Mathias, K., Roy, R., Davis, D., Poli, R., Balakrishnan, K., Honavar, V., Rudolph, G., Wegener, J., Bull, L., Potter, M.A., Schultz, A.C., Miller, J.F., Burke, E., Jonoska, N. (eds.) GECCO 2002: Proceedings of the Genetic and Evolutionary Computation Conference, p. 952. Morgan Kaufmann Publishers, San Francisco (2002)

    Google Scholar 

  399. Korovkin, K., Richards, R.: Visual Auction: A Classifier System Pedagogical and Researcher Tool. In: Brave, S., Wu, A.S. (eds.) Late Breaking Papers at the 1999 Genetic and Evolutionary Computation Conference (GECCO 1999), pp. 159–163 (1999)

    Google Scholar 

  400. Kovacs, T.: Evolving Optimal Populations with XCS Classifier Systems. Master’s thesis, School of Computer Science, University of Birmingham, Birmingham, U.K. (1996), Also technical report CSR-96-17 and CSRP-96-17 ftp://ftp.cs.bham.ac.uk/pub/techreports/1996/CSRP-96-17.ps.gz

  401. Kovacs, T.: Steady State Deletion Techniques in a Classifier System. Deletion Schemes for Classifier Systems (1997), Unpublished document - partially subsumed by Kovacs (1999a)

    Google Scholar 

  402. Kovacs, T.: XCS Classifier System Reliably Evolves Accurate, Complete, and Minimal Representations for Boolean Functions. In: Roy, Chawdhry, Pant (eds.) Soft Computing in Engineering Design and Manufacturing, pp. 59–68. Springer, Heidelberg (1997), ftp://ftp.cs.bham.ac.uk/pub/authors/T.Kovacs/index.html

  403. Kovacs, T.: XCS Classifier System Reliably Evolves Accurate, Complete, and Minimal Representations for Boolean Functions. Technical Report Version. Technical Report CSRP-97-19, School of Computer Science, University of Birmingham, Birmingham, U.K. (1997), http://www.cs.bham.ac.uk/system/tech-reports/tr.html

  404. Kovacs, T.: Deletion schemes for classifier systems. In: Banzhaf et al. [22], pp. 329–336; Also technical report CSRP-99-08, School of Computer Science, University of Birmingham

    Google Scholar 

  405. Kovacs, T.: Strength or accuracy? A comparison of two approaches to fitness calculation in learning classifier systems. In: Wu [739], pp. 258–265

    Google Scholar 

  406. Kovacs, T.: Strength or Accuracy? Fitness calculation in learning classifier systems. In: Lanzi et al. [446], pp. 143–160

    Google Scholar 

  407. Kovacs, T.: Towards a theory of strong overgeneral classifiers. In: Martin, W., Spears, W.M. (eds.) Foundations of Genetic Algorithms (FOGA), vol. 6, pp. 165–184. Morgan Kaufmann, San Francisco (2000); Also technical report CSRP-00-20, School of Computer Science, University of Birmingham

    Google Scholar 

  408. Kovacs, T.: Trends in learning classifier systems publication. Technical Report CSRP-00-21, School of Computer Science, University of Birmingham (2000)

    Google Scholar 

  409. Kovacs, T.: What should a classifier system learn. In: Proceedings of the Congress on Evolutionary Computation (CEC 2001) [5], pp. 775–782 (2001)

    Google Scholar 

  410. Kovacs, T.: A Comparison and Strength and Accuracy-based Fitness in Learning Classifier Systems. PhD thesis, University of Birmingham (2002)

    Google Scholar 

  411. Kovacs, T.: Learning Classifier Systems Resources. Journal of Soft Computing 6(3-4), 240–243 (2002)

    MATH  Google Scholar 

  412. Kovacs, T.: Performance and population state metrics for rule-based learning systems. In: Fogel, D.B., El-Sharkawi, M.A., Yao, X., Greenwood, G., Iba, H., Marrow, P., Shackleton, M. (eds.) Proceedings of the 2002 Congress on Evolutionary Computation CEC 2002, pp. 1781–1786. IEEE Press, Los Alamitos (2002)

    Google Scholar 

  413. Kovacs, T.: Two views of classifier systems. In: Lanzi et al. [448], pp. 74–87

    Google Scholar 

  414. Kovacs, T.: What should a classifier system learn and how should we measure it? Journal of Soft Computing 6(3-4), 171–182 (2002)

    MATH  Google Scholar 

  415. Kovacs, T.: Strength or Accuracy: Credit Assignment in Learning Classifier Systems. Springer, Heidelberg (2004)

    MATH  Google Scholar 

  416. Kovacs, T., Kerber, M.: Some dimensions of problem complexity for XCS. In: Wu, A.S. (ed.) Proceedings of the 2000 Genetic and Evolutionary Computation Conference Workshop Program, pp. 289–292 (2000)

    Google Scholar 

  417. Kovacs, T., Kerber, M.: What makes a problem hard for XCS? In: Proceedings of the International Workshop on Learning Classifier Systems (IWLCS 2000), in the Joint Workshops of SAB 2000 and PPSN 2000 [4] (2000) (Extended abstract)

    Google Scholar 

  418. Kovacs, T., Kerber, M.: What makes a problem hard for XCS. In: Lanzi et al, pp. 80-99

    Google Scholar 

  419. Kovacs, T., Lanzi, P.L.: A Learning Classifier Systems Bibliography. Technical Report 99.52, Dipartimento di Elettronica e Informazione, Politecnico di Milano (1999)

    Google Scholar 

  420. Kovacs, T., Lanzi, P.L.: A Learning Classifier Systems Bibliography. In: Lanzi et al. [446], pp. 321–347

    Google Scholar 

  421. Kovacs, T., Lanzi, P.L.: A Bigger Learning Classifier Systems Bibliography. In: Lanzi et al. [447], pp. 213–249

    Google Scholar 

  422. Koyama, Y.: The emergence of the cooperative behaviors in a small group. In: Takadama [640]

    Google Scholar 

  423. Koza, J.R., Banzhaf, W., Chellapilla, K., Deb, K., Dorigo, M., Fogel, D.B., Garzon, M.H., Goldberg, D.E., Iba, H., Riolo, R. (eds.): Genetic Programming 1998: Proceedings of the Third Annual Conference. Morgan Kaufmann, San Francisco (1998)

    Google Scholar 

  424. Koza, J.R., Deb, K., Dorigo, M., Fogel, D.B., Garzon, M.H., Iba, H., Riolo, R. (eds.): Genetic Programming 1997: Proceedings of the Second Annual Conference. Morgan Kaufmann, San Francisco (1997)

    Google Scholar 

  425. Koza, J.R., Goldberg, D.E., Fogel, D.B., Riolo, R.L. (eds.): Genetic Programming 1996: Proceedings of the First Annual Conference, Stanford University, CA, USA. MIT Press, Cambridge (1996)

    Google Scholar 

  426. Landau, S., Picault, S., Sigaud, O., Gérard, P.: A comparison between ATNoSFERES and XCSM. In: Langdon, W.B., Cantú-Paz, E., Mathias, K., Roy, R., Davis, D., Poli, R., Balakrishnan, K., Honavar, V., Rudolph, G., Wegener, J., Bull, L., Potter, M.A., Schultz, A.C., Miller, J.F., Burke, E., Jonoska, N. (eds.) GECCO 2002: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 926–933. Morgan Kaufmann Publishers, San Francisco (2002)

    Google Scholar 

  427. Lanzi, P.L.: A Model of the Environment to Avoid Local Learning (An Analysis of the Generalization Mechanism of XCS). Technical Report 97.46, Politec-nico di Milano. Department of Electronic Engineering and Information Sciences (1997), http://ftp.elet.polimi.it/people/lanzi/report46.ps.gz

  428. Lanzi, P.L.: A Study of the Generalization Capabilities of XCS. In: Bäck [14], pp. 418–425, http://ftp.elet.polimi.it/people/lanzi/icga97.ps.gz

  429. Lanzi, P.L.: Solving Problems in Partially Observable Environments with Classifier Systems (Experiments on Adding Memory to XCS). Technical Report 97.45, Politecnico di Milano. Department of Electronic Engineering and Information Sciences (1997), http://ftp.elet.polimi.it/people/lanzi/report45.ps.gz

  430. Lanzi, P.L.: Adding Memory to XCS. In: Proceedings ofthe IEEE Conference on Evolutionary Computation (IECC 1998). IEEE Press, Los Alamitos (1998), http://ftp.elet.polimi.it/people/lanzi/icec98.ps.gz

  431. Lanzi, P.L.: An analysis of the memory mechanism of XCSM. In: Koza et al. [423], pp. 643–651, http://ftp.elet.polimi.it/people/lanzi/gp98.ps.gz

  432. Lanzi, P.L.: Generalization in Wilson’s XCS. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, p. 501. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  433. Lanzi, P.L.: Reinforcement Learning by Learning Classifier Systems. PhD thesis, Politecnico di Milano (1998)

    Google Scholar 

  434. Lanzi, P.L.: An Analysis of Generalization in the XCS Classifier System. Evolutionary Computation 7(2), 125–149 (1999)

    Article  Google Scholar 

  435. Lanzi, P.L.: Extending the Representation of Classifier Conditions Part I: From Binary to Messy Coding. In: Banzhaf et al. [22], pp. 337–344

    Google Scholar 

  436. Lanzi, P.L.: Extending the Representation of Classifier Conditions Part II: From Messy Coding to S-Expressions. In: Banzhaf et al. [22], pp. 345–352

    Google Scholar 

  437. Lanzi, P.L.: Adaptive Agents with Reinforcement Learning and Internal Memory. In: Sixth International Conference on the Simulation of Adaptive Behavior (SAB 2000), pp. 333–342 (2000)

    Google Scholar 

  438. Lanzi, P.L.: Learning Classifier Systems from a Reinforcement Learning Perspective. Technical Report 00-03, Dipartimento di Elettronica e Informazione, Politecnico di Milano (2000)

    Google Scholar 

  439. Lanzi, P.L.: Mining interesting knowledge from data with the xcs classifier system. In: Spector, L., Goodman, E.D., Wu, A., Langdon, W.B., Voigt, H.-M., Gen, M., Sen, S., Dorigo, M., Pezeshk, S., Garzon, M.H., Burke, E. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2001), San Francisco, California, USA, July 7-11, pp. 958–965. Morgan Kaufmann, San Francisco (2001)

    Google Scholar 

  440. Lanzi, P.L.: Learning classifier systems from a reinforcement learning perspective. Journal of Soft Computing 6(3-4), 162–170 (2002)

    MATH  Google Scholar 

  441. Lanzi, P.L.: Estimating classifier generalization and action’s effect: A minimalist approach. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2724, pp. 1894–1905. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  442. Lanzi, P.L.: Using raw accuracy to estimate classifier fitness in XCS. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2724, pp. 1922–1923. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  443. Lanzi, P.L., Colombetti, M.: An Extension of XCS to Stochastic Environments. Technical Report 98.85, Dipartimento di Elettronica e Informazione - Politecnico di Milano (1998)

    Google Scholar 

  444. Lanzi, P.L., Colombetti, M.: An Extension to the XCS Classifier System for Stochastic Environments. In: Banzhaf et al. [22], pp. 353–360

    Google Scholar 

  445. Lanzi, P.L., Riolo, R.L.: A Roadmap to the Last Decade of Learning Classifier System Research. In: Lanzi et al. [446], pp. 33–62 (1989-1999)

    Google Scholar 

  446. Lanzi, P.L., Stolzmann, W., Wilson, S.W. (eds.): IWLCS 1999. LNCS (LNAI), vol. 1813, p. 243. Springer, Heidelberg (2000)

    Book  Google Scholar 

  447. Lanzi, P.L., Stolzmann, W., Wilson, S.W. (eds.): IWLCS 2000. LNCS (LNAI), vol. 1996. Springer, Heidelberg (2001)

    Google Scholar 

  448. Lanzi, P.L., Stolzmann, W., Wilson, S.W. (eds.): IWLCS 2001. LNCS (LNAI), vol. 2321. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  449. Lanzi, P.L., Wilson, S.W.: Optimal classifier system performance in non-Markov environments. Technical Report 99.36, Dipartimento di Elettronica e Informazione - Politecnico di Milano (1999); Also IlliGAL technical report 99022, University of Illinois

    Google Scholar 

  450. Lanzi, P.L., Wilson, S.W.: Toward Optimal Performance in Classifier Systems. Evolutionary Computation 8(4), 393–418 (2000)

    Article  Google Scholar 

  451. Bull, L., Wyatt, D., Parmee, I.: Initial modifications to XCS for use in interactive evolutionary design. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, p. 568. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  452. Lattaud, C.: Non-Homogeneous Classifier Systems in a Macro-Evolution Process. In: Wu [739], pp. 266–271

    Google Scholar 

  453. Lattaud, C.: Non-Homogeneous Classifier Systems in a Macro-Evolution Process. In: Lanzi et al. [446], pp. 161–174

    Google Scholar 

  454. Lebaron, B., Arthur, W.B., Palmer, R.: The Time Series Properties of an Artificial Stock Market. Journal of Economic Dynamics and Control 23, 1487–1516 (1999)

    Article  MATH  Google Scholar 

  455. Lettau, M., Uhlig, H.: Rules of Thumb and Dynamic Programming. Technical report, Department of Economics, Princeton University (1994)

    Google Scholar 

  456. Lettau, M., Uhlig, H.: Rules of thumb versus dynamic programming. American Economic Review 89, 148–174 (1999)

    Article  Google Scholar 

  457. Liao, P.-Y., Chen, J.-S.: Dynamic trading strategey learning model using learning classifier systems. In: Proceedings of the 2001 Congress on Evolutionary Computation (CEC 2001) [5], pp. 783–789 (2001)

    Google Scholar 

  458. Liepins, G.E., Hillard, M.R., Palmer, M., Rangarajan, G.: Credit Assignment and Discovery in Classifier Systems. International Journal of Intelligent Systems 6, 55–69 (1991)

    Article  Google Scholar 

  459. Liepins, G.E., Hilliard, M.R., Palmer, M., Rangarajan, G.: Alternatives for Classifier System Credit Assignment. In: Proceedings of the Eleventh International Joint Conference on Artificial Intelligence (IJCAI 1989), pp. 756–761 (1989)

    Google Scholar 

  460. Liepins, G.E., Wang, L.A.: Classifier System Learning of Boolean Concepts. In: Booker and Belew [72], pp. 318–323

    Google Scholar 

  461. Linkens, D.A., Nyongesah, H.O.: Genetic Algorithms for fuzzy control - Part II: Off-line system development and application. Technical Report CTA/94/2387/1st MS, Department of Automatic Control and System Engineering, University of Sheffield, U.K. (1994)

    Google Scholar 

  462. Liu, J.J., Kwok, J.T.-Y.: An extended genetic rule induction algorithm. In: Proceedings of the 2000 Congress on Evolutionary Computation (CEC 2000) [3], pp. 458–463 (2000)

    Google Scholar 

  463. Llorà, X., Garrell, J.M.: Evolution of Decision Trees. In: Forth Catalan Conference on Artificial Intelligence (CCIA 2001). ACIA Press (2001) (to appear)

    Google Scholar 

  464. Llorà, X., Garrell, J.M.: Evolving Partially-Defined Instances with Evolutionary Algorithms. In: Proceedings of the 18th International Conference on Machine Learning (ICML 2001), pp. 337–344. Morgan Kaufmann Publishers, San Francisco (2001)

    Google Scholar 

  465. Llorà, X., Garrell, J.M.: Knowledge-Independent Data Mining with FineGrained Parallel Evolutionary Algorithms. In: Spector, L., Goodman, E.D., Wu, A., Langdon, W.B., Voigt, H.-M., Gen, M., Sen, S., Dorigo, M., Pezeshk, S., Garzon, M.H., Burke, E. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2001), San Francisco, California, USA, pp. 461–468. Morgan Kaufmann Publishers, San Francisco (2001)

    Google Scholar 

  466. Llorà, X., Garrell, J.M.: Coevolving different knowledge representations with fine-grained parallel learning classifier systems. In: Langdon, W.B., Cantù-Paz, E., Mathias, K., Roy, R., Davis, D., Poli, R., Balakrishnan, K., Honavar, V., Rudolph, G., Wegener, J., Bull, L., Potter, M.A., Schultz, A.C., Miller, J.F., Burke, E., Jonoska, N. (eds.) GECCO 2002: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 934–941. Morgan Kaufmann Publishers, San Francisco (2002)

    Google Scholar 

  467. Xavier, L.: Automatic Classification and Artfificial Life Models. In: Proceedings of the International Worshop on Learning, Learning 2000 (2000)

    Google Scholar 

  468. Maes, P., Mataric, M.J., Meyer, J.-A., Pollack, J., Wilson, S.W. (eds.): From Animals to Animats 4. Proceedings of the Fourth International Conference on Simulation of Adaptive Behavior (SAB 1996). A Bradford Book /MIT Press (1996)

    Google Scholar 

  469. Maezawa, C., Atsumi, M.: Collaborative Learning Agents with Structural Classifier Systems. In: Banzhaf et al. [22], p. 777 (One page poster paper)

    Google Scholar 

  470. Manderick, B.: Selectionist Categorization. In: Schwefel and Männer [572], pp. 326–330

    Google Scholar 

  471. Bernadó, I., Mansilla, E., Maria Garrell i Guiu, J.: MOLeCS: A Multi Objective Learning Classifier System. In: Whitely et al. [699], p. 390 (One page poster paper)

    Google Scholar 

  472. Marimon, R., McGrattan, E., Sargent, T.J.: Money as a Medium of Exchange in an Economy with Artificially Intelligent Agents. Journal of Economic Dynamics and Control 14, 329–373 (1990); Also Technical Report 89-004, Santa Fe Institute (1989)

    Google Scholar 

  473. Mataric, M.J.: A comparative analysis of reinforcement learning methods. A.I. Memo No. 1322, Massachusetts Institute of Technology (1991)

    Google Scholar 

  474. McAulay, A.D., Oh, J.C.: Image Learning Classifier System Using Genetic Algorithms. In: Proceedings IEEENAECON 1989 (1989)

    Google Scholar 

  475. Melhuish, C., Fogarty, T.C.: Applying A Restricted Mating Policy To Determine State Space Niches Using Immediate and Delayed Reinforcement. In: Fogarty [246], pp. 224–237

    Google Scholar 

  476. Meyer, J.A., Wilson, S.W. (eds.): From Animals toAnimats 1. Proceedings of the First International Conference on Simulation of Adaptive Behavior (SAB 1990). A Bradford Book/MIT Press (1990)

    Google Scholar 

  477. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. Springer, Heidelberg (1996); Contains introductory chapter on LCS

    Google Scholar 

  478. Miller, J.H., Forrest, S.: The dynamical behavior of classifier systems. In: Schaffer [563], pp. 304–310

    Google Scholar 

  479. Mitchell, M., Forrest, S.: Genetic Algorithms and Artificial Life. Technical Report 9311-072, Santa Fe Institute (1993), Contains a 2 page review of work on LCS

    Google Scholar 

  480. Mitlöhner, J.: Classifier systems and economic modelling. In: APL 1996. Proceedings of the APL 1996 Conference on Designing the Future, vol. 26(4), pp. 77–86 (1996)

    Google Scholar 

  481. Mohan, C.K.: Expert Systems: A Modern Overview. Kluwer, Dordrecht (2000); Contains an introductory survey chapter on LCS

    Google Scholar 

  482. Montanari, D.: Classifier systems with a constant-profile bucket brigade. In: Collected Abstracts for the First International Workshop on Learning Classifier System (IWLCS 1992) [2], October 6-8. NASA Johnson Space Center, Houston, Texas (1992)

    Google Scholar 

  483. Moriarty, D.E., Schultz, A.C., Grefenstette, J.J.: Evolutionary Algorithms for Reinforcement Learning. Journal of Artificial Intelligence Research 11, 199–229 (1999), http://www.ib3.gmu.edu/gref/papers/moriarty-jair99.html

    MathSciNet  Google Scholar 

  484. Munos, R., Patinel, J.: Reinforcement learning with dynamic covering of state-action space: Partitioning Q-learning. In: Cliff et al. [145], pp. 354–363

    Google Scholar 

  485. Murata, T., Kawakami, S., Nozawa, H., Gen, M., Ishibuchi, H.: Three-objective genetic algorithms for designing compact fuzzy rule-based systems for pattern classification problems. In: Spector, L., Goodman, E.D., Wu, A., Langdon, W.B., Voigt, H.-M., Gen, M., Sen, S., Dorigo, M., Pezeshk, S., Garzon, M.H., Burke, E. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2001), San Francisco, California, USA, July 7-11, pp. 485–492. Morgan Kaufmann, San Francisco (2001)

    Google Scholar 

  486. Muruzábal, J.: Fuzzy and Probabilistic Reasoning in Simple Learning Classifier Systems. In: Proceedings of the 2nd IEEE International Conference on Evolutionary Computation, vol. 1, pp. 262–266. IEEE Press, Los Alamitos (1995)

    Google Scholar 

  487. Muruzábal, J.: Mining the space of generality with uncertainty-concerned cooperative classifiers. In: Banzhaf et al. [22], pp. 449–457

    Google Scholar 

  488. Muruzábal, J., Muñoz, A.: Diffuse pattern learning with Fuzzy ARTMAP and PASS. In: Davidor and Schwefel [169], pp. 376–385

    Google Scholar 

  489. Nagasaka, I., Taura, T.: 3D Geometric Representation for Shape Generation using Classifier System. In: Koza et al. [424], pp. 515–520

    Google Scholar 

  490. Neri, F.: First Order Logic Concept Learning by means of a Distributed Genetic Algorithm. PhD thesis, University of Milano, Italy (1997)

    Google Scholar 

  491. Neri, F.: Comparing local search with respect to genetic evolution to detect intrusions in computer networks. In: Proceedings of the 2000 Congress on Evolutionary Computation (CEC 2000) [3], pp. 238–243 (2000)

    Google Scholar 

  492. Neri, F.: Relating two cooperative learning strategies to the features of the found concept description. In: Spector, L., Goodman, E.D., Wu, A., Langdon, W.B., Voigt, H.-M., Gen, M., Sen, S., Dorigo, M., Pezeshk, S., Garzon, M.H., Burke, E. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2001), San Francisco, California, USA, July 7-11, p. 986. Morgan Kaufmann, San Francisco (2001)

    Google Scholar 

  493. Neri, F.: Cooperative concept learning by means of A distributed GA. In: Langdon, W.B., Cantú-Paz, E., Mathias, K., Roy, R., Davis, D., Poli, R., Balakrishnan, K., Honavar, V., Rudolph, G., Wegener, J., Bull, L., Potter, M.A., Schultz, A.C., Miller, J.F., Burke, E., Jonoska, N. (eds.) GECCO 2002: Proceedings of the Genetic and Evolutionary Computation Conference, p. 953. Morgan Kaufmann Publishers, San Francisco (2002)

    Google Scholar 

  494. Neri, F., Giordana, A.: A distributed genetic algorithm for concept learning. In: Eshelman [227], pp. 436—443

    Google Scholar 

  495. Neri, F., Saitta, L.: Exploring the power of genetic search in learning symbolic classifiers. IEEE Trans. on Pattern Analysis and Machine Intelligence, PAMI 18, 1135–1142 (1996)

    Google Scholar 

  496. Nissen, V., Biethahn, J.: Determining a Good Inventory Policy with a Genetic Algorithm. In: Biethahn, J., Nissen, V. (eds.) Evolutionary Algorithms in Management Applications, pp. 240–249. Springer, Heidelberg (1995)

    Google Scholar 

  497. Odetayo, M.O., McGregor, D.R.: Genetic algorithm for inducing control rules for a dynamic system. In: Schaffer [563], pp. 177–182, It could be argued this is a GA as opposed to a classifier system approach

    Google Scholar 

  498. Oh, J.C.: Improved Classifier System Using Genetic Algorithms. Master’s thesis, Wright State University (year unknown - pre) (2000)

    Google Scholar 

  499. Ono, N., Rahmani, A.T.: Self-Organization of Communication in Distributed Learning Classifier Systems. In: Albrecht et al. [9], pp. 361–367

    Google Scholar 

  500. Oosthuizen, G.D.: Machine Learning: A mathematical framework for neural network, symbolic and genetics-based learning. In: Schaffer [563], pp. 385–390

    Google Scholar 

  501. Oppacher, F., Deugo, D.: The Evolution of Hierarchical Representations. In: Proceedings of the 3rd European Conference on Artificial Life. Springer, Heidelberg (1995)

    Google Scholar 

  502. Palacios-Durazo, R.A., Valenzuela-Rendon, M.: Lessons learned from LCSs: An incremental non-generational coevolutionary algorithm. In: Rylander, B. (ed.) Genetic and Evolutionary Computation Conference (GECCO) Late Breaking Papers, pp. 248–254 (2003)

    Google Scholar 

  503. Parodi, A., Bonelli, P.: The Animat and the Physician. In: Meyer and Wilson [476], pp. 50–57

    Google Scholar 

  504. Parodi, A., Bonelli, P.: A New Approach to Fuzzy Classifier Systems. In: Forrest [260], pp. 223–230

    Google Scholar 

  505. Patel, M.J., Colombetti, M., Dorigo, M.: Evolutionary Learning for Intelligent Automation: A Case Study. Intelligent Automation and Soft Computing 1(1), 29–42 (1995)

    Google Scholar 

  506. Patel, M.J., Dorigo, M.: Adaptive Learning of a Robot Arm. In: Fogarty [246], pp. 180–194

    Google Scholar 

  507. Patel, M.J., Schnepf, U.: Concept Formation as Emergent Phenomena. In: Varela, F.J., Bourgine, P. (eds.) Proceedings First European Conference on Artificial Life, pp. 11–20. MIT Press, Cambridge (1992)

    Google Scholar 

  508. Paton, R.C.: Designing Adaptable Systems through the Study and Application of Biological Sources. In: Rayward-Smith, V. (ed.) Applications of Modern Heuristic Methods, pp. 39–54. Alfred Waller Ltd. (1995)

    Google Scholar 

  509. Pech-Gourg, N., Hao, J.-K.: A genetic algorithm for the classification of natural corks. In: Spector, L., Goodman, E.D., Wu, A., Langdon, W.B., Voigt, H.-M., Gen, M., Sen, S., Dorigo, M., Pezeshk, S., Garzon, M.H., Burke, E. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2001), San Francisco, California, USA, July 7-11, pp. 1382–1388. Morgan Kaufmann, San Francisco (2001)

    Google Scholar 

  510. Pfeifer, R., Blumberg, B., Meyer, J.-A., Wilson, S.W. (eds.): From Animals to Animats 5. Proceedings of the Fifth International Conference on Simulation of Adaptive Behavior (SAB 1998). A Bradford Book/MIT Press (1998)

    Google Scholar 

  511. Phelan, S.E.: Using Artificial Adaptive Agents to Explore Strategic Landscapes.PhD thesis, School of Business, Faculty of Law and Management, La Trobe University, Australia (1997)

    Google Scholar 

  512. Pipe, A.G., Carse, B.: First results from experiments in fuzzy classifier system architectures for mobile robotics. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, p. 578. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  513. Pipe, A.G., Carse, B.: A Comparison between two Architectures for Searching and Learning in Maze Problems. In: Fogarty [246], pp. 238–249

    Google Scholar 

  514. Pipe, A.G., Carse, B.: Autonomous Acquisition of Fuzzy Rules for Mobile Robot Control: First Results from two Evolutionary Computation Approaches. In: Whitely et al. [699], pp. 849–856

    Google Scholar 

  515. Piroddi, R., Rusconi, R.: A Parallel Classifier System to Solve Learning Problems. Master’s thesis, Dipartimento di Elettronica e Informazione, Politecnico di Milano, Milano, Italy (1992)

    Google Scholar 

  516. Potter, M.A., Jong, K.A.D., Grefenstette, J.J.: A Coevolutionary Approach to Learning Sequential Decision Rules. In: Eshelman [227], pp. 366–372

    Google Scholar 

  517. Ramsey, C.L., Grefenstette, J.J.: Case-based initialization of genetic algorithms. In: Forrest [260], pp. 84–91, http://www.ib3.gmu.edu/gref/

  518. Ramsey, C.L., Grefenstette, J.J.: Case-based anytime learning. In: Aha, D.W. (ed.) Case-Based Reasoning: Papers from the 1994 Workshop, AAAI Press, Menlo Park (1994), Also Technical Report WS-94-07 http://www.ib3.gmu.edu/gref/

  519. Rawlins, G.J.E. (ed.): Proceedings of the First Workshop on Foundations of Genetic Algorithms (FOGA 1991). Morgan Kaufmann, San Mateo (1991)

    Google Scholar 

  520. Reveley, C.: A learning classifier system adapted for hold’em poker. Master’s thesis, Birkbeck College, University of London, UK (2002)

    Google Scholar 

  521. Richards, R.A.: Zeroth-Order Shape Optimization Utilizing a Learning Classifier System. PhD thesis, Stanford University (1995), Online version available at http://www-leland.stanford.edu/~buc/SPHINcsX/book.html

  522. Richards, R.A.: Classifier System Metrics: Graphical Depictions. In: Koza et al. [423], pp. 652–657

    Google Scholar 

  523. Richards, R.A., Sheppard, S.D.: Classifier System Based Structural Component Shape Improvement Utilizing I-DEAS. In: Iccon User’s Conference Proceeding, Iccon (1992)

    Google Scholar 

  524. Richards, R.A., Sheppard, S.D.: Learning Classifier Systems in Design Optimization. In: Design Theory and Methodology 1992. The American Society of Mechanical Engineers (1992)

    Google Scholar 

  525. Richards, R.A., Sheppard, S.D.: Two-dimensional Component Shape Improvement via Classifier System. In: Artificial Intelligence in Design 1992. Kluwer Academic Publishers, Dordrecht (1992)

    Google Scholar 

  526. Richards, R.A., Sheppard, S.D.: A Learning Classifier System for Three-dimensional Shape Optimization. In: Ebeling, W., Rechenberg, I., Voigt, H.-M., Schwefel, H.-P. (eds.) PPSN 1996. LNCS, vol. 1141, pp. 1032–1042. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  527. Richards, R.A., Sheppard, S.D.: Three-Dimensional Shape Optimization Utilizing a Learning Classifier System. In: Koza et al. [425], pp. 539–546

    Google Scholar 

  528. Riolo, R.L.: Bucket Brigade Performance: I. Long Sequences of Classifiers. In: Grefenstette [307], pp. 184–195

    Google Scholar 

  529. Riolo, R.L.: Bucket Brigade Performance: II. Default Hierarchies. In: Grefenstette [307], pp. 196–201

    Google Scholar 

  530. Riolo, R.L.: CFS-C: A Package of Domain-Independent Subroutines for Implementing Classifier Systems in Arbitrary User-Defined Environments. Technical report, University of Michigan (1988)

    Google Scholar 

  531. Riolo, R.L.: Empirical Studies of Default Hierarchies and Sequences of Rules in Learning Classifier Systems. PhD thesis, University of Michigan (1988)

    Google Scholar 

  532. Riolo, R.L.: The Emergence of Coupled Sequences of Classifiers. In: Schaffer [563], pp. 256–264

    Google Scholar 

  533. Riolo, R.L.: The Emergence of Default Hierarchies in Learning Classifier Systems. In: Schaffer [563], pp. 322–327

    Google Scholar 

  534. Riolo, R.L.: Lookahead Planning and Latent Learning in a Classifier System. In: Meyer and Wilson [476], pp. 316–326

    Google Scholar 

  535. Riolo, R.L.: Modelling Simple Human Category Learning with a Classifier System. In: Booker and Belew [72], pp. 324–333

    Google Scholar 

  536. Riolo, R.L.: The discovery and use of forward models for adaptive classifier systems. In: Collected Abstracts for the First International Workshop on Learning Classifier System (IWLCS 1992) [2], October 6-8. NASA Johnson Space Center, Houston, Texas (1992)

    Google Scholar 

  537. Rivera, J., Santana, R.: Improving the Discovery Component of Classifier Systems by the Application of Estimation of Distribution Algorithms. In: Proceedings of Student Sessions ACAI 1999: Machine Learning and Applications, Chaina, Greece, pp. 43–44 (July 1999)

    Google Scholar 

  538. Robert, A., Chantemargue, F., Courant, M.: Grounding Agents in EMud Artificial Worlds. In: Proceedings of the First International Conference on Virtual Worlds, Paris, France, July 1-3 (1998)

    Google Scholar 

  539. Roberts, G.: A Rational Reconstruction of Wilson’s Animat and Holland’s CS-1. In: Schaffer [563], pp. 317–321

    Google Scholar 

  540. Roberts, G.: Dynamic Planning for Classifier Systems. In: Forrest [260], pp. 231–237

    Google Scholar 

  541. Robertson, G.G.: Parallel Implementation of Genetic Algorithms in a Classifier System. In: Grefenstette [307], pp. 140-147, Also Technical Report TR-159 RL87-5 Thinking Machines Corporation

    Google Scholar 

  542. Robertson, G.G.: Population Size in Classifier Systems. In: Proceedings of the Fifth International Conference on Machine Learning, pp. 142–152. Morgan Kaufmann, San Francisco (1988)

    Google Scholar 

  543. Robertson, G.G.: Parallel Implementation of Genetic Algorithms in a Classifier System. In: Davis [171], pp. 129–140

    Google Scholar 

  544. Robertson, G.G., Riolo, R.L.: A Tale of Two Classifier Systems. Machine Learning 3, 139–159 (1988)

    Google Scholar 

  545. Meyer, J.A., Roitblat, H.L., Wilson, S.W. (eds.): From Animals to Animats 2. Proceedings of the Second International Conference on Simulation of Adaptive Behavior (SAB 1992). A Bradford Book/MIT Press (1992)

    Google Scholar 

  546. Romão, W., Freitas, A.A., Pacheco, R.C.S.: A genetic algorithm for discovering interesting fuzzy prediction rules: Applications to science and technology data. In: Langdon, W.B., Cantú-Paz, E., Mathias, K., Roy, R., Davis, D., Poli, R., Balakrishnan, K., Honavar, V., Rudolph, G., Wegener, J., Bull, L., Potter, M.A., Schultz, A.C., Miller, J.F., Burke, E., Jonoska, N. (eds.) GECCO 2002: Proceedings of the Genetic and Evolutionary Computation Conference, New York, July 9-13, pp. 1188–1195. Morgan Kaufmann Publishers, San Francisco (2002)

    Google Scholar 

  547. Ross, P., Schulenburg, S., Marin-Blázquez, J., Hart, E.: Hyper-heuristics: Learning to combine simple heuristics in bin-packing problems. In: Langdon, W.B., Cantú-Paz, E., Mathias, K., Roy, R., Davis, D., Poli, R., Balakrishnan, K., Honavar, V., Rudolph, G., Wegener, J., Bull, L., Potter, M.A., Schultz, A.C., Miller, J.F., Burke, E., Jonoska, N. (eds.) GECCO 2002: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 942–948. Morgan Kaufmann Publishers, San Francisco (2002)

    Google Scholar 

  548. Ross, S.: Accurate Reaction or Reflective Action? Master’s thesis, School of Cognitive and Computing Sciences, University of Sussex (1994)

    Google Scholar 

  549. Rouwhorst, S.E., Engelbrecht, A.P.: Searching the forest: Using decision trees as building blocks for evolutionary search in classification databases. In: Proceedings of the 2000 Congress on Evolutionary Computation (CEC 2000) [3], pp. 633–638 (2000)

    Google Scholar 

  550. Sanchis, A., Molina, J.M., Isasi, P., Segovia, J.: Knowledge acquisition including tags in a classifier system. In: Angeline et al. [10], pp. 137–144

    Google Scholar 

  551. Sannier, A.V., Goodman, E.D.: Midgard: A Genetic Approach to Adaptive Load Balancing for Distributed Systems. In: Proc. Fifth Intern. Conf. Machine Learning. Morgan Kaufmann, San Francisco (1988)

    Google Scholar 

  552. Santos, M.F.: Learning Classifiers in Distributed Environments. PhD thesis, De-partamento de Sistemas de Informao, Universidade do Minho, Portugal (2000)

    Google Scholar 

  553. Sanza, C., Destruel, C., Duthen, Y.: Agents autonomes pour l’interaction adaptative dans les mondes virtuels. In: 5ème Journées de I’Association Francaise d’Informatique Graphique. Décembre, Rennes, France (1997) ( in French)

    Google Scholar 

  554. Sanza, C., Destruel, C., Duthen, Y.: A learning method for adaptation and evolution in virtual environments. In: 3rd International Conference on Computer Graphics and Artificial Intelligence, Limoges, France (April 1998)

    Google Scholar 

  555. Sanza, C., Destruel, C., Duthen, Y.: Autonomous actors in an interactive real-time environment. In: ICVC 1999 International Conference on Visual Computing, Goa, India (February 1999)

    Google Scholar 

  556. Sanza, C., Destruel, C., Duthen, Y.: Learning in real-time environment based on classifiers system. In: 7th International Conference in Central Europe on Computer Graphics, Visualization and Interactive Digital Media 1999, Plzen, Czech Republic (1999)

    Google Scholar 

  557. Sanza, C., Panatier, C., Luga, H., Duthen, Y.: Adaptive Behavior for Cooperation: a Virtual Reality Application. In: 8th IEEE International Workshop on Robot and Human Interaction, September 1999, Pisa, Italy (1999)

    Google Scholar 

  558. Saxon, S., Barry, A.: XCS and the Monk’s problem. In: Wu [739], pp. 272–281

    Google Scholar 

  559. Saxon, S., Barry, A.: XCS and the Monk’s Problems. In: Lanzi et al. [446], pp. 223–242

    Google Scholar 

  560. Schachtner, A.: A classifier system with integrated genetic operators. In: Schwefel, H.-P., Männer, R. (eds.) PPSN 1990. LNCS, vol. 496, pp. 331–337. Springer, Heidelberg (1991)

    Chapter  Google Scholar 

  561. David Schaffer, J.: Some experiments in machine learning using vector evaluated genetic algorithms. PhD thesis, Vanderbilt University, Nashville (1984)

    Google Scholar 

  562. David Schaffer, J.: Learning Multiclass Pattern Discrimination. In: Grefenstette [305], pp. 74–79

    Google Scholar 

  563. David Schaffer, J. (ed.): Proceedings of the 3rd International Conference on Genetic Algorithms (ICGA 1989), George Mason University. Morgan Kaufmann, San Francisco (1989)

    Google Scholar 

  564. Schulenburg, S., Ross, P.: An Adaptive Agent Based Economic Model. In: Lanzi et al. [446], pp. 263–282

    Google Scholar 

  565. Schulenburg, S., Ross, P.: Strength and Money: An LCS Approach to Increasing Returns. In: Proceedings of the International Workshop on Learning Classifier Systems (IWLCS 2000), in the Joint Workshops of SAB 2000 and PPSN 2000 [4] (2000) (Extended abstract)

    Google Scholar 

  566. Schulenburg, S., Ross, P.: Strength and money: An LCS approach to increasing returns. In: Lanzi et al. [447], pp. 114–137

    Google Scholar 

  567. Schulenburg, S., Ross, P.: Explorations in lcs models of stock trading. In: Lanzi etal. [448], pp. 151–180

    Google Scholar 

  568. Schultz, A.C., Grefenstette, J.J.: Evolving Robot Behaviors. Poster at the 1994 Artificial Life Conference (1994) (NCARAI Report: AIC-94-017), http://www.ib3.gmu.edu/gref/

  569. Schultz, A.C., Grefenstette, J.J.: Improving Tactical Plans with Genetic Algorithms. In: Proceedings of the Second International Conference on Tools for Artificial Intelligence. IEEE, Los Alamitos (1990)

    Google Scholar 

  570. Schultz, A.C., Ramsey, C.L., Grefenstette, J.J.: Simulation assisted learning by competition: Effects of noise differences between training model and target environment. In: Proceedings of Seventh International Conference on Machine Learning (ICML), pp. 211–215. Morgan Kaufmann, San Francisco (1990)

    Google Scholar 

  571. Schuurmans, D., Schaeffer, J.: Representational Difficulties with Classifier Systems. In: Schaffer [563], pp. 328–333, http://www.cs.ualberta.ca/jonathan/Papers/Papers/classifier.ps

  572. Schwefel, H.-P., Männer, R. (eds.): PPSN 1990. LNCS, vol. 496. Springer, Heidelberg (1991)

    MATH  Google Scholar 

  573. Sedbrook, T.A., Wright, H., Wright, R.: Application of a Genetic Classifier for Patient Triage. In: Booker and Belew [72], pp. 334–338

    Google Scholar 

  574. Sen, S.: Classifier system learning of multiplexer function. Dept. of Electrical Engineering, University of Alabama, Tuscaloosa, Alabama. Class Project (1988)

    Google Scholar 

  575. Sen, S.: Sequential Boolean Function Learning by Classifier System. In: Proc. of 1st International Conference on Industrial and Engineering Applications of Artificial Intelligence and Expert Systems (1988)

    Google Scholar 

  576. Sen, S.: Noise Sensitivity in a simple classifier system. In: Proc. 5th Conf. on Neural Networks & Parallel Distributed Processing (1992)

    Google Scholar 

  577. Sen, S.: Improving classification accuracy through performance history. In: Forrest [260], pp. 652–652

    Google Scholar 

  578. Sen, S.: A Tale of two representations. In: Proc. 7th International Conference on Industrial and Engineering Applications of Artificial Intelligence and Expert Systems, pp. 245-254 (1994)

    Google Scholar 

  579. Sen, S.: Modelling human categorization by a simple classifier system. In: WSC1: 1st Online Workshop on Soft Computing, August 19-30 (1996), http://www.bioele.nuee.nagoya-u.ac.jp/wsc1/papers/p020.html

  580. Sen, S., Sekaran, M.: Multiagent Coordination with Learning Classifier Systems. In: Weiss, G., Sen, S. (eds.) IJCAI-WS 1995. LNCS, vol. 1042, pp. 218–233. Springer, Heidelberg (1996)

    Google Scholar 

  581. Sepulveda, T., Gomes, M.R.: A Study on the Evolution of Learning Classifier Systems. In: Proceedings of the International Workshop on Learning Classifier Systems (IWLCS 2000), in the Joint Workshops of SAB 2000 and PPSN 2000 [4] (2000) (Extended abstract)

    Google Scholar 

  582. Seredynski, F., Cichosz, P., Klebus, G.P.: Learning classifier systems in multi-agent environments. In: Proceedings of the First IEE/IEEE International Conference on Genetic Algorithms in Engineering Systems: Innovations and Applications, GALESIA 1995 (1995)

    Google Scholar 

  583. Seredynski, F., Janikow, C.Z.: Learning nash equilibria by coevolving distributed classifier systems. In: Angeline et al. [10], pp. 1619–1626

    Google Scholar 

  584. Shi, J.: Genetic Algorithms for Game Playing. In: Karr, C., Freeman, L.M. (eds.) Industrial Applications of Genetic Algorithms, pp. 321–338. CRC Press, Boca Raton (1998)

    Google Scholar 

  585. Shimada, S., Anzai, Y.: Component-Based Adaptive Architecture with Classifier Systems. In: Pfeifer et al. [510]

    Google Scholar 

  586. Shimada, S., Anzai, Y.: Fast and Robust Convergence of Chained Classifiers by Generating Operons through Niche Formation. In: Banzhaf et al. [22], pp. 810 (One page poster paper)

    Google Scholar 

  587. Shimada, S., Anzai, Y.: On Niche Formation and Corporation in Classifier System. In: Takadama [640]

    Google Scholar 

  588. Shiose, T., Sawaragi, T.: Extended learning classifier systems by dual referencing mechanism. In: Takadama [640]

    Google Scholar 

  589. Shu, L., Schaeffer, J.: VCS: Variable Classifier System. In: Schaffer [563], pp. 334–339, http://www.cs.ualberta.ca/~jonathan/Papers/Papers/vcs.ps

  590. Shu, L., Schaeffer, J.: Improving the Performance of Genetic Algorithm Learning by Choosing a Good Initial Population. Technical Report TR-90-22, University of Alberta, CS DEPT, Edmonton, Alberta, Canada (1990)

    Google Scholar 

  591. Shu, L., Schaeffer, J.: HCS: Adding Hierarchies to Classifier Systems. In: Booker and Belew [72], pp. 339–345

    Google Scholar 

  592. Sigaud, O.: On the usefulness of a semi-automated Classifier System: the engineering perspective. In: Proceedings of the International Workshop on Learning Classifier Systems (IWLCS 2000), in the Joint Workshops of SAB 2000 and PPSN 2000 [4] (2000) (Extended abstract)

    Google Scholar 

  593. Sigaud, O., Gerard, P.: Being reactive by exchanging roles: an empirical study. In: Hannebauer, M., Wendler, J., Pagello, E. (eds.) ECAI-WS 2000. LNCS (LNAI), vol. 2103, pp. 150–172. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  594. Sigaud, O., Gerard, P.: Using classifier systems as adaptive expert systems for control. In: Lanzi, P.L., Stolzmann, W., Wilson, S.W. (eds.) IWLCS 2000. LNCS (LNAI), vol. 1996, pp. 138–157. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  595. Simon, M.C.: Using XCS to form hyper-heuristics for the set covering problem. In: Barry, A.M. (ed.) GECCO 2003: Proceedings of the Bird of a Feather Workshops, Genetic and Evolutionary Computation Conference, pp. 246–249. AAAI, Menlo Park (2003)

    Google Scholar 

  596. Smith, G.D.: Economic Applications of Genetic Algorithms. In: Rayward-Smith, V. (ed.) Applications of Modern Heuristic Methods, pp. 71–90. Alfred Waller Ltd. (1995), Contains 2 pages on LCS

    Google Scholar 

  597. Smith, G.D., Steele, N.C., Albrecht, R.F. (eds.): Artificial Neural Networks and Genetic Algorithms. Springer, Heidelberg (1997)

    Google Scholar 

  598. Smith, R.E.: Default Hierarchy Formation and Memory Exploitation in Learning Classifier Systems. PhD thesis, University of Alabama (1991)

    Google Scholar 

  599. Smith, R.E.: A Report on The First International Workshop on Learning Classifier Systems (IWLCS 1992)., October 6-9. NASA Johnson Space Center, Houston, Texas (1992), ftp://lumpi.informatik.uni-dortmund.de/pub/LCS/papers/lcs92.ps.gz or from ENCORE, The Electronic Appendix to the Hitch-Hiker’s Guide to Evolutionary Computation ftp://ftp.krl.caltech.edu/pub/EC/Welcome.html in the section on Classifier Systems (1992)

  600. Smith, R.E.: Is a classifier system a type of neural network? In: Collected Abstracts for the First International Workshop on Learning Classifier System (IWLCS 1992) [2], October 6-8. NASA Johnson Space Center, Houston, Texas (1992)

    Google Scholar 

  601. Smith, R.E.: Memory exploitation in learning classifier systems. In: Collected Abstracts for the First International Workshop on Learning Classifier System (IWLCS 1992) [2], October 6-8, NASA Johnson Space Center, Houston, Texas (1992)

    Google Scholar 

  602. Smith, R.E.: Genetic Learning in Rule-Based and Neural Systems. In: Proceedings ofthe Third International Workshop on Neural Networks and Fuzzy Logic, January 1993, vol. 1, p. 183. NASA. Johnson Space Center (1993)

    Google Scholar 

  603. Smith, R.E.: Memory Exploitation in Learning Classifier Systems. Evolutionary Computation 2(3), 199–220 (1994)

    Google Scholar 

  604. Smith, R.E.: Derivative Methods: Learning Classifier Systems. In: Bäck et al. [15], pp. B1.2:6-B1.5:11., http://www.iop.org/Books/Catalogue/

  605. Smith, R.E., Cribbs, H.B.: Is a Learning Classifier System a Type of Neural Network? Evolutionary Computation 2(1), 19–36 (1994)

    Article  Google Scholar 

  606. Robert, E., Smith, B.A., Dike, R.K., Mehra, B.: Classifier Systems in Combat: Two-sided Learning of Maneuvers for Advanced Fighter Aircraft. In: Computer Methods in Applied Mechanics and Engineering. Elsevier, Amsterdam (1999)

    Google Scholar 

  607. Smith, R.E., Dike, B.A., Ravichandran, B., El-Fallah, A., Mehra, R.K.: The Fighter Aircraft LCS: A Case of Different LCS Goals and Techniques. In: Wu [739], pp. 282–289

    Google Scholar 

  608. Smith, R.E., Dike, B.A., Ravichandran, B., El-Fallah, A., Mehra, R.K.: The Fighter Aircraft LCS: A Case of Different LCS Goals and Techniques. In: Lanzi et al. [446], pp. 283–300

    Google Scholar 

  609. Smith, R.E., Forrest, S., Perelson, A.S.: Searching for diverse, cooperative subpopulations with Genetic Algorithms. Evolutionary Computation 1(2), 127–149 (1993)

    Google Scholar 

  610. Smith, R.E., Forrest, S., Perelson, A.S.: Population Diversity in an Immune System Model: Implications for Genetic Search. In: Darrell Whitley, L. (ed.) Foundations of Genetic Algorithms, vol. 2, pp. 153–165. Morgan Kaufmann, San Francisco (1992)

    Google Scholar 

  611. Smith, R.E., Goldberg, D.E.: Reinforcement Learning with Classifier Systems: Adaptive Default Hierarchy Formation. Technical Report 90002, TCGA, University of Alabama (1990)

    Google Scholar 

  612. Smith, R.E., Goldberg, D.E.: Variable Default Hierarchy Separation in a Classifier System. In: Rawlins [519], pp. 148–170

    Google Scholar 

  613. Smith, R.E., Goldberg, D.E.: Reinforcement learning with classifier systems: adaptative default hierarchy formation. Applied Artificial Intelligence 6 (1992)

    Google Scholar 

  614. Smith, R.E., Cribbs III., H.B.: Cooperative Versus Competitive System Elements in Coevolutionary Systems. In: Maes et al. [468], pp. 497–505

    Google Scholar 

  615. Smith, R.E., Cribbs III., H.B.: Combined biological paradigms. Robotics and Autonomous Systems 22(1), 65–74 (1997)

    Article  Google Scholar 

  616. Smith, R.E., Valenzuela-Rendón, M.: A Study of Rule Set Development in a Learning Classifier System. In: Schaffer [563], pp. 340–346

    Google Scholar 

  617. Smith, S.F.: A Learning System Based on Genetic Adaptive Algorithms. PhD thesis, University of Pittsburgh (1980)

    Google Scholar 

  618. Smith, S.F.: Flexible Learning of Problem Solving Heuristics through Adaptive Search. Proceedings Eight International Joint Conference on Artificial Intelligence, 422–425 (1983)

    Google Scholar 

  619. Smith, S.F.: Adaptive learning systems. In: Forsyth, R. (ed.) Expert Systems: Principles and Case Studies, pp. 169–189. Chapman and Hall, Boca Raton (1984)

    Google Scholar 

  620. Smith, S.F., Greene, D.P.: Cooperative Diversity using Coverage as a Constraint. In: Collected Abstracts for the First International Workshop on Learning Classifier System (IWLCS 1992) [2], October 6-8, NASA Johnson Space Center, Houston, Texas (1992)

    Google Scholar 

  621. Spector, L., Goodman, E.D., Wu, A., Langdon, W.B., Voigt, H.-M., Gen, M., Sen, S., Dorigo, M., Pezeshk, S., Garzon, M.H., Burke, E. (eds.): Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2001). Morgan Kaufmann, San Francisco (2001)

    Google Scholar 

  622. Spiessens, P.: PCS: A Classifier System that Builds a Predictive Internal World Model. In: PROC of the 9th European Conference on Artificial Intelligence, Stockholm, Sweden, August 6-10, pp. 622–627 (1990)

    Google Scholar 

  623. Spohn, B.G., Crowley, P.H.: Complexity of Strategies and the Evolution of Cooperation. In: Koza et al. [424], pp. 521–528

    Google Scholar 

  624. Stolzmann, W.: Learning Classifier Systems using the Cognitive Mechanism of Anticipatory Behavioral Control, detailed version. In: Proceedings of the First European Workshop on Cognitive Modelling, pp. 82–89. TU, Berlin (1996), http://www.psychologie.uni-wuerzburg.de/stolzmann/

    Google Scholar 

  625. Stolzmann, W.: Antizipative Classifier Systeme. PhD thesis, Fachbereich Mathe-matik/Informatik, University of Osnabrück (1997)

    Google Scholar 

  626. Stolzmann, W.: Two Applications of Anticipatory Classifier Systems (ACSs). In: Proceedings ofthe 2nd European Conference on Cognitive Science, Manchester, U.K., pp. 68–73 (1997), http://www.psychologie.uni-wuerzburg.de/stolzmann/

  627. Stolzmann, W.: Anticipatory classifier systems. In: Proceedings of the Third Annual Genetic Programming Conference, pp. 658–664. Morgan Kaufmann, San Francisco (1998), http://www.psychologie.uni-wuerzburg.de/stolzmann/gp-98.ps.gz

    Google Scholar 

  628. Stolzmann, W.: Untersuchungen zur adquatheit des postulats einer antizipativen verhaltenssteuerung zur erklrung von verhalten mit ACSs. In: Krause, W., Kotkamp, U. (eds.) Intelligente Informationsverarbeitung, pp. 130–138. Deutscher Universitts Verlag (1998)

    Google Scholar 

  629. Stolzmann, W.: Latent Learning in Khepera Robots with Anticipatory Classifier Systems. In: Wu [739], pp. 290–297

    Google Scholar 

  630. Stolzmann, W.: An Introduction to Anticipatory Classiier Systems. In: Lanzi et al. [446], pp. 175–194

    Google Scholar 

  631. Stolzmann, W., Butz, M.: Latent Learning and Action-Planning in Robots with Anticipatory Classifier Systems. In: Lanzi et al. [446], pp. 301–317

    Google Scholar 

  632. Stolzmann, W., Butz, M., Hoffmann, J., Goldberg, D.E.: First cognitive capabilities in the anticipatory classiier system. In: et al. [228], pp. 287-296, Also Technical Report 2000008 of the Illinois Genetic Algorithms Laboratory

    Google Scholar 

  633. Stone, C., Bull, L.: Towards learning classiier systems for continuous-valued online environments. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2724, pp. 1924–1925. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  634. Takadama, K., Inoue, H., Okada, M., Shimohara, K., Katai, O.: Agent architecture based on interactive self-reflection classifier system. International Journal of Artificial Life and Robotics, AROB (2001)

    Google Scholar 

  635. Takadama, K., Inoue, H., Shimohara, K.: How to autonomously decide boundary between self and others? In: The Third Asia-Pacific Conference on Simulated Evolution And Learning, SEAL 2000 (2000)

    Google Scholar 

  636. Takadama, K., Nakasuka, S., Shimhara, K.: Robustness in Organizational-learning Oriented Classifier System. Journal of Soft Computing 6(3-4), 229–239 (2002)

    Google Scholar 

  637. Takadama, K., Nakasuka, S., Terano, T.: Multiagent reinforcement learning with organizational-learning oriented classifier system. In: IEEE 1998 International Conference On Evolutionary Computation (ICEC 1998), pp. 63–68 (1998)

    Google Scholar 

  638. Takadama, K., Terano, T.: Good solutions will emerge without a global objective function: Applying organizational-learning oriented classifier system to printed circuit board design. In: The IEEE 1997 International Conference On Systems, Man and Cybernetics (SMC 1997), pp. 3355–3360 (1997)

    Google Scholar 

  639. Takadama, K., Terano, T., Shimohara, K.: Designing multiple agents using learning classifier systems. In: The 4th Japan-Australia Joint Workshop on Intelligent and Evolutionary Systems, JA 2000 (2000)

    Google Scholar 

  640. Takadama, K. (ed.): Exploring New Potentials in Learning Classifier Systems. A Session of the 4th Japan-Australia Joint Workshop on Intelligent and Evolutionary Systems. Ashikaga Institute of Technology (2000)

    Google Scholar 

  641. Takadama, K.: Organizational-learning oriented classifier system. Technical Report TR-H-290, ATR (2000) (in Japanese)

    Google Scholar 

  642. Takadama, K., Nakasuka, S., Terano, T.: On the credit assignment algorithm for organizational-learning oriented classifier system. In: The 1997 System/information joint Symposium of SICE (The Society of Instrument and Control Engineers), pp. 41–46 (1997) (in Japanese)

    Google Scholar 

  643. Takadama, K., Nakasuka, S., Terano, T.: Organizational-learning oriented classifier system. In: The 11th Annual Conference of JSAI (Japanese Society for Artificial Intelligence), pp. 201–204 (1997) (in Japanese)

    Google Scholar 

  644. Takadama, K., Nakasuka, S., Terano, T.: Organizational-learning oriented classifier system for intelligent multiagent systems. In: The 6th Multi Agent and Cooperative Computation (MACC 1997) of JSSST (Japan Society for Software Science and Technology) (1997) (in Japanese)

    Google Scholar 

  645. Takadama, K., Nakasuka, S., Terano, T.: Analyzing the roles of problem solving and learning in organizational-learning oriented classifier system. In: Lee, H.-Y. (ed.) PRICAI 1998. LNCS, vol. 1531, pp. 71–82. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  646. Takadama, K., Nakasuka, S., Shimohara, K.: Designing multiple agents using learning classifier systems - suggestions from three levels analyses. In: Takadama [640]

    Google Scholar 

  647. Takadama, K., Terano, T., Shimohara, K.: Agent-based model toward organizational computing: From organizational learning to genetics-based machine learning. In: The IEEE 1999 International Conference On Systems, Man and Cybernetics (SMC 1999), vol. 2, pp. 604–609 (1999)

    Google Scholar 

  648. Takadama, K., Terano, T., Shimohara, K.: Can multiagents learn in organization? - analyzing organizational learning-oriented classifier system. In: IJCAI 1999 Workshop on Agents Learning about, from and other Agents (1999)

    Google Scholar 

  649. Takadama, K., Terano, T., Shimohara, K.: Learning Classifier Systems meet Multiagent Environments. In: Proceedings of the International Workshop on Learning Classifier Systems (IWLCS 2000), in the Joint Workshops of SAB 2000 and PPSN 2000 [4] (2000) (Extended abstract)

    Google Scholar 

  650. Takadama, K., Terano, T., Shimohara, K., Hori, H., Nakasuka, S.: Making Organizational Learning Operational: Implications from Learning Classifier System. Computational and Mathematical Organization Theory (CMOT) 5(3), 229–252 (1999)

    Article  MATH  Google Scholar 

  651. Takadama, K., Terano, T., Shimohara, K., Hori, H., Nakasuka, S.: Toward emergent problem solving by distributed classifier systems based on organizational learning. Transactions of SICE (the Society of Instrument and Control Engineers) 35(11), 1486–1495 (1999) (in Japanese)

    Google Scholar 

  652. Terano, T., Muro, Z.: On-the-fly knowledge base refinement by a classifier system. AI Communications 4(2) (1994)

    Google Scholar 

  653. Terano, T., Takadama, K.: An organizational learning model of multiagents with a learning classifier system. In: The 1997 Fall Conference of JASMIN (Japan Society for Management Information), pp. 128–131 (1997) (in Japanese)

    Google Scholar 

  654. Tharakunnel, K.K., Butz, M.V., Goldberg, D.E.: Towards building block propagation in XCS: A negative result and its implications. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, D., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2724, pp. 1906–1917. Springer, Heidelberg (2003)

    Google Scholar 

  655. Tokinaga, S., Whinston, A.B.: Applying Adaptive Credit Assignment Algorithm for the Learning Classifier System Based upon the Genetic Algorithm. IEICE Transactions on Fundamentals of Electronics Communications and Computer Sciences VE75A(5), 568–577 (1992)

    Google Scholar 

  656. Tomlinson, A.: Corporate Classifier Systems. PhD thesis, University of the West of England (1999)

    Google Scholar 

  657. Tomlinson, A., Bull, L.: A Corporate Classifier System. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 550–559. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  658. Tomlinson, A., Bull, L.: A Corporate XCS. In: Wu [739], pp. 298–305

    Google Scholar 

  659. Tomlinson, A., Bull, L.: On Corporate Classifier Systems: Increasing the Benefits of Rule Linkage. In: Banzhaf et al. [22], pp. 649–656

    Google Scholar 

  660. Tomlinson, A., Bull, L.: A zeroth level corporate classifier system. In: Wu [739], pp. 306–313

    Google Scholar 

  661. Tomlinson, A., Bull, L.: A Corporate XCS. In: Lanzi et al. [446], pp. 194–208

    Google Scholar 

  662. Tomlinson, A., Bull, L.: Cxcs: Improvements and corporate generalization. In: Spector, L., Goodman, E.D., Wu, A., Langdon, W.B., Voigt, H.-M., Gen, M., Sen, S., Dorigo, M., Pezeshk, S., Garzon, M.H., Burke, E. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2001), San Francisco, California, USA, July 7-11, pp. 966–973. Morgan Kaufmann, San Francisco (2001)

    Google Scholar 

  663. Tomlinson, A., Bull, L.: An accuracy-based corporate classifier system. Journal of Soft Computing 6(3-4), 200–215 (2002)

    MATH  Google Scholar 

  664. Tsui, K.C., Plumbley, M.: A New Hillclimber for Classifier Systems. In: GALESI 1997 (1997)

    Google Scholar 

  665. Tufts, P.: Evolution of a Clustering Scheme for Classifier Systems: Beyond the Bucket Brigade. PhD Thesis proposal (1994), http://www.cs.brandeis.edu/~zippy/papers.htm

  666. Tufts, P.: Dynamic Classifiers: Genetic Programming and Classifier Systems. In: Siegel, E.V., Koza, J.R. (eds.) Working Notes for the AAAI Symposium on Genetic Programming, pp. 114–119. MIT/AAAI, Cambridge/Menlopark (1995)

    Google Scholar 

  667. Twardowski, K.: Implementation of a Genetic Algorithm based Associative Classifier System (ACS). In: Proceedings International Conference on Tools for Artificial Intelligence (1990)

    Google Scholar 

  668. Twardowski, K.: Credit Assignment for Pole Balancing with Learning Classifier Systems. In: Forrest [260], pp. 238–245

    Google Scholar 

  669. Twardowski, K.: An Associative Architecture for Genetic Algorithm-Based Machine Learning. Computer 27(11), 27–38 (1994)

    Article  Google Scholar 

  670. Urzelai, J., Floreano, D., Dorigo, M., Colombetti, M.: Incremental Robot Shaping. Connection Science 10(3-4), 341–360 (1998)

    Article  Google Scholar 

  671. Urzelai, J., Floreano, D., Dorigo, M., Colombetti, M.: Incremental Robot Shaping. In: Koza et al. [423], pp. 832–840

    Google Scholar 

  672. Valenzuela-Rendón, M.: Boolean Analysis of Classifier Sets. In: Schaffer [563], pp. 351–358

    Google Scholar 

  673. Valenzuela-Rendón, M.: Two analysis tools to describe the operation of classifier systems. PhD thesis, University of Alabama (1989), Also TCGA technical report 89005

    Google Scholar 

  674. Valenzuela-Rendón, M.: The Fuzzy Classifier System: a Classifier System for Continuously Varying Variables. In: Booker and Belew [72], pp. 346–353

    Google Scholar 

  675. Valenzuela-Rendón, M.: The Fuzzy Classifier System: Motivations and First Results. In: Schwefel, H.-P., Männer, R. (eds.) PPSN 1990. LNCS, vol. 496, pp. 338–342. Springer, Heidelberg (1991)

    Chapter  Google Scholar 

  676. Valenzuela-Rendón, M.: Reinforcement learning in the fuzzy classifier system. In: Collected Abstracts for the First International Workshop on Learning Classifier System (IWLCS 1992) [2], October 6-8, NASA Johnson Space Center, Houston, Texas (1992)

    Google Scholar 

  677. Valenzuela-Rendón, M., Uresti-Charre, E.: A Non-Genetic Algorithm for Multiobjective Optimization. In: Bäck [14], pp. 658–665

    Google Scholar 

  678. van Belle, T.: A New Approach to Genetic-Based Automatic Feature Discovery. Master’s thesis, University of Alberta (1995), http://www.cs.ualberta.ca/~jonathan/

  679. Vargas, P.A., Filho, C.L., Von Zuben, F.J.: On-line approach for loss reduction in electric power distribution networks using learning classifier systems. In: Lanzi et al. [448], pp. 181–196

    Google Scholar 

  680. Venturini, G.: Apprentissage Adaptatif et Apprentissage Supervise par Algorithme Génétique. PhD thesis, Université de Paris-Sud. (1994)

    Google Scholar 

  681. Vriend, N.: Self-Organization of Markets: An Example of a Computational Approach. Computational Economics 8(3), 205–231 (1995)

    Article  MATH  Google Scholar 

  682. Walter, D., Mohan, C.K.: ClaDia: A Fuzzy Classifier System for Disease Diagnosis. In: Proceedings of the Congress on Evolutionary Computation (CEC 2000) [3], pp. 1429–1435 (2000)

    Google Scholar 

  683. Wang, L.A.: Classifier System Learning of the Boolean Multiplexer Function. Master’s thesis, Computer Science Department, University of Tennessee, Knoxville, TN (1990)

    Google Scholar 

  684. Weiss, G.: Action-oriented learning in classifier systems. Technical Report FKI-158-91, Technical Univ. Münche (TUM) (1991)

    Google Scholar 

  685. Weiss, G.: The Action-Oriented Bucket Brigade. Technical Report FKI-156-91, Technical Univ. Munchen (TUM) (1991)

    Google Scholar 

  686. Weiss, G.: Hierarchical chunking in classifier systems. In: Proceedings of the 12th National Conference on Artificial Intelligence, pp. 1335–1340. AAAI Press/MIT Press (1994)

    Google Scholar 

  687. Weiss, G.: Learning by chunking in reactive classifier systems. Technical report, Technical Univ. München (TUM) (1994)

    Google Scholar 

  688. Weiss, G.: The locality/globality dilemma in classifier systems and an approach to its solution. Technical Report FKI-187-94, Technical Univ. München (TUM) (1994)

    Google Scholar 

  689. Weiss, G.: An action-oriented perspective of learning in classifier systems. Journal of Experimental and Theoretical Artificial Intelligence 8, 43–62 (1996)

    Article  Google Scholar 

  690. Westerdale, T.H.: The bucket brigade is not genetic. In: Grefenstette [305], pp. 45–59

    Google Scholar 

  691. Westerdale, T.H.: A Reward Scheme for Production Systems with Overlapping Conflict Sets. IEEE Transactions on Systems, Man and Cybernetics, SMC 16(3), 369–383 (1986)

    Article  Google Scholar 

  692. Westerdale, T.H.: Altruism in the bucket brigade. In: Grefenstette [307], pp. 22–26

    Google Scholar 

  693. Westerdale, T.H.: A Defence of the Bucket Brigade. In: Schaffer [563], pp. 282–290

    Google Scholar 

  694. Westerdale, T.H.: Quasimorphisms or Queasymorphisms? Modelling Finite Automaton Environments. In: Rawlins [519], pp. 128–147

    Google Scholar 

  695. Westerdale, T.H.: Redundant Classifiers and Prokaryote Genomes. In: Booker and Belew [72], pp. 354–360

    Google Scholar 

  696. Westerdale, T.H.: Classifier Systems - No Wonder They Don’t Work. In: Koza et al. [424], pp. 529–537

    Google Scholar 

  697. Westerdale, T.H.: An Approach to Credit Assignment in Classifier Systems. Complexity 4(2) (1999)

    Google Scholar 

  698. Westerdale, T.H.: Wilson’s Error Measurement and the Markov Property - Identifying Detrimental Classifiers. In: Wu [739], pp. 314–321

    Google Scholar 

  699. Whitely, D., Goldberg, D., Cantu-Paz, E., Spector, L., Parmee, I., Beyer, H.-G. (eds.): Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2000). Morgan Kaufmann, San Francisco (2000)

    Google Scholar 

  700. Wilcox, J.R.: Organizational Learning within a Learning Classifier System. Master’s thesis, University of Illinois (1995), Also Technical Report No. 95003 IlliGAL

    Google Scholar 

  701. Wilson, S.W.: Aubert processing and intelligent vision. Technical report, Polaroid Corporation (1981)

    Google Scholar 

  702. Wilson, S.W.: On the retino-cortical mapping. International Journal of Man-Machine Studies 18, 361–389 (1983)

    Article  Google Scholar 

  703. Wilson, S.W.: Adaptive “cortical” pattern recognition. In: Grefenstette [305], pp. 188–196

    Google Scholar 

  704. Wilson, S.W.: Knowledge Growth in an Artificial Animal. In: Grefenstette [305], pp. 16–23; Also appeared in Proceedings of the 4th Yale

    Google Scholar 

  705. Wilson, S.W.: Knowledge Growth in an Artificial Animal. In: Proceedings of the 4th Yale Workshop on Applications of Adaptive Systems Theory, pp. 98–104 (1985)

    Google Scholar 

  706. Wilson, S.W.: Classifier System Learning of a Boolean Function. Technical Report RIS 27r, The Rowland Institute for Science (1986)

    Google Scholar 

  707. Wilson, S.W.: Knowledge Growth in an Artificial Animal. In: Narenda, K.S. (ed.) Adaptive and learning systems: Theory and applications, pp. 255–264. Plenum Press, New York (1986)

    Google Scholar 

  708. Wilson, S.W.: Classifier Systems and the Animat Problem. Machine Learning 2, 199–228 (1987); Also Research Memo RIS-36r, the Rowland Institute for Science, Cambridge, MA (1986)

    Google Scholar 

  709. Wilson, S.W.: Hierarchical Credit Allocation in a Classifier System. In: Proceedings Tenth International Joint Conference on AI (IJCAI 1987), pp. 217–220. Morgan Kaufmann Publishers, San Francisco (1987); Also Research Memo RIS-37r, the Rowland Institute for Science, Cambridge, MA (1986)

    Google Scholar 

  710. Wilson, S.W.: Quasi-Darwinian Learning in a Classifier System. In: Proceedings of the Fourth International Workshop on Machine Learning, pp. 59–65. Morgan Kaufmann, San Francisco (1987)

    Google Scholar 

  711. Wilson, S.W.: The genetic algorithm and biological development. In: Grefenstette [307], pp. 247–251

    Google Scholar 

  712. Wilson, S.W.: Bid Competition and Specificity Reconsidered. Complex Systems 2(6), 705–723 (1988)

    MATH  MathSciNet  Google Scholar 

  713. Wilson, S.W.: Hierarchical Credit Assignment in a Classifier System. In: Elzas, M., Oren, T., Zeigler, B.P. (eds.) Modelling and Simulation Methodology: Knowledge Systems Paradigms. North Holland, Amsterdam (1988)

    Google Scholar 

  714. Wilson, S.W.: Hierarchical Credit Allocation in a Classifier System. In: Davis [171], pp. 104–115

    Google Scholar 

  715. Wilson, S.W.: Hierarchical credit allocation in a classifier system. In: Elzas, M.S., Oren, T.I., Zeigler, B.P. (eds.) Modelling and simulation methodology, pp. 351–357. North-Holland, New York (1989)

    Google Scholar 

  716. Wilson, S.W.: The Genetic Algorithm and Simulated Evolution. In: Langton, C. (ed.) Artificial Life: Proceedings of an Interdisciplinary Workshop on the Synthesis and Simulation of Living Systems. Santa Fe Institute Studies in the Sciences of Complexity, vol. VI, Addison-Wesley, Reading (1989)

    Google Scholar 

  717. Wilson, S.W.: Perceptron redux: Emergence of structure. Special issue of Physica D [1] 42, 249–256 (Republished in Emergent Computation Forrest, S. (ed.) MIT Press/Bradford Books)

    Google Scholar 

  718. Wilson, S.W.: The Animat Path to AI. In: Meyer and Wilson [476], pp. 15–21., http://prediction-dynamics.com/

  719. Wilson, S.W.: Classifier System mapping of real vectors. In: Collected Abstracts for the First International Workshop on Learning Classifier System (IWLCS 1992)[2], October 6-8, NASA Johnson Space Center, Houston, Texas (1992)

    Google Scholar 

  720. Wilson, S.W.: Toward a GA solution of the discovery problem. In: Collected Abstracts for the First International Workshop on Learning Classifier System (IWLCS 1992) [2], October 6-8, NASA Johnson Space Center, Houston, Texas (1992)

    Google Scholar 

  721. Wilson, S.W.: ZCS: A zeroth level classifier system. Evolutionary Computation 2(1), 1–18 (1994), http://prediction-dynamics.com/

  722. Wilson, S.W.: Classifier Fitness Based on Accuracy. Evolutionary Computation 3(2), 149–175 (1995), http://prediction-dynamics.com/

  723. Wilson, S.W.: Explore/exploit strategies in autonomy. In: Maes et al. [468], pp. 325–332

    Google Scholar 

  724. Wilson, S.W.: Generalization in XCS. Unpublished contribution to the ICML 1996 Workshop on Evolutionary Computing and Machine Learning (1996), http://prediction-dynamics.com/

  725. Wilson, S.W.: Generalization in evolutionary learning. Presented at the Fourth European Conference on Artificial Life (ECAL 1997), Brighton, UK, July 27-31 (1997), http://prediction-dynamics.com/

  726. Wilson, S.W.: Generalization in the XCS classifier system. In: Koza et al. [423], pp. 665–674, http://prediction-dynamics.com/

  727. Wilson, S.W.: Get real! XCS with continuous-valued inputs. In: Booker, L., Forrest, S., Mitchell, M., Riolo, R.L. (eds.) Festschrift in Honor of John H. Holland, pp. 111–121. Center for the Study of Complex Systems (1999), http://prediction-dynamics.com/

  728. Wilson, S.W.: State of XCS classifier system research. In: Wu [739], pp. 322–334; Also Technical Report 99.1.1, Prediction Dynamics, Concord MA, http://prediction-dynamics.com/

  729. Wilson, S.W.: Get Real! XCS with Continuous-Valued Inputs. In: Lanzi et al. [446], pp. 209–219

    Google Scholar 

  730. Wilson, S.W.: Mining Oblique Data with XCS. In: Proceedings of the International Workshop on Learning Classifier Systems (IWLCS 2000), in the Joint Workshops of SAB 2000 and PPSN 2000 [4] (2000) (Extended abstract)

    Google Scholar 

  731. Wilson, S.W.: Mining Oblique Data with XCS. Technical Report 2000028, University of Illinois at Urbana-Champaign (2000)

    Google Scholar 

  732. Wilson, S.W.: State of XCS Classifier System Research. In: Lanzi et al. [446], pp. 63–82

    Google Scholar 

  733. Wilson, S.W.: Function approximation with a classifier system. In: Spector, L., Goodman, E.D., Wu, A., Langdon, W.B., Voigt, H.-M., Gen, M., Sen, S., Dorigo, M., Pezeshk, S., Garzon, M.H., Burke, E. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2001), San Francisco, California, USA, July 7-11, pp. 974–981. Morgan Kaufmann, San Francisco (2001)

    Google Scholar 

  734. Wilson, S.W.: Advances in Learning Classifier Systems. In: Lanzi et al. [448]

    Google Scholar 

  735. Wilson, S.W., Goldberg, D.E.: A Critical Review of Classifier Systems. In: Schaffer [563], pp. 244–255, http://prediction-dynamics.com/

  736. Withall, M.S., Hinde, C.J., Stone, R.G.: Evolving readable Perl. In: Langdon, W.B., Cantú-Paz, E., Mathias, K., Roy, R., Davis, D., Poli, R., Balakrishnan, K., Honavar, V., Rudolph, G., Wegener, J., Bull, L., Potter, M.A., Schultz, A.C., Miller, J.F., Burke, E., Jonoska, N. (eds.) GECCO 2002: Proceedings of the Genetic and Evolutionary Computation Conference. Morgan Kaufmann Publishers, San Francisco (2002)

    Google Scholar 

  737. Wright, I.: Reinforcement Learning and Animat Emotions. In: Maes et al. [468], pp. 272–281

    Google Scholar 

  738. Wright, I.: Reinforcement learning and animat emotions. Technical Report CSRP-96-4, School of Computer Science. University of Birmingham (1996), ftp://ftp.cs.bham.ac.uk/pub/tech-reports/1996/CSRP-96-04.ps.gz

  739. Wu, A.S. (ed.): Proceedings of the 1999 Genetic and Evolutionary Computation Conference Workshop Program (1999)

    Google Scholar 

  740. Yates, D.F., Fairley, A.: An Investigation into Possible Causes of, and Solutions to, Rule Strength Distortion Due to the Bucket Brigade Algorithm. In: Forrest [260], pp. 246-253

    Google Scholar 

  741. Yates, D.F., Fairley, A.: Evolutionary Stability in Simple Classifier Systems. In: Fogarty [246], pp. 28–37

    Google Scholar 

  742. Yoshimi, T., Taura, T.: Hierarchical Classifier System Based on the Concept of Viewpoint. In: Koza et al. [423], pp. 675–678

    Google Scholar 

  743. Yoshimi, T., Taura, T.: A Computational Model of a Viewpoint-Forming Process in a Hierarchical Classifier System. In: Banzhaf et al. [22], pp. 758–766

    Google Scholar 

  744. Zhang, Z., Franklin, S., Dasgupta, D.: Metacognition in Software Agents Using Classifier Systems. In: AAAI 1998. Proceedings of the Fifteenth National Conference on Artificial Intelligence, Madison (WI), pp. 83–88. AAAI-Press/MIT Press, Menlo Park (1998)

    Google Scholar 

  745. Zhou, H.H.: Classifier systems with long term memory. In: Grefenstette [305], pp. 178–182

    Google Scholar 

  746. Zhou, H.H.: CSM: A genetic classifier system with memory for learning by analogy. PhD thesis, Department of Computer Science, Vanderbilt University, Nashville, TN (1987)

    Google Scholar 

  747. Zhou, H.H.: CSM: A Computational Model of Cumulative Learning. Machine Learning 5(4), 383–406 (1990)

    Google Scholar 

  748. Zhou, H.H., Grefenstette, J.J.: Learning by Analogy in Genetic Classifier Systems. In: Schaffer [563], pp. 291–297

    Google Scholar 

  749. Zitar, R.A., Hassoun, M.H.: Regulator Control via Genetic Search Assisted Reinforcement. In: Forrest [260], pp. 254–263

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kovacs, T. (2003). The 2003 Learning Classifier Systems Bibliography. In: Lanzi, P.L., Stolzmann, W., Wilson, S.W. (eds) Learning Classifier Systems. IWLCS 2002. Lecture Notes in Computer Science(), vol 2661. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-40029-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-40029-5_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20544-9

  • Online ISBN: 978-3-540-40029-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics