Skip to main content

XCS’s Strength-Based Twin: Part I

  • Conference paper
Learning Classifier Systems (IWLCS 2002)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2661))

Included in the following conference series:

Abstract

Wilson’s XCS has rapidly become the most popular classifier system of all time, and is a major focus of current research. XCS’s primary distinguishing feature is that it bases rule fitness on the accuracy with which rules predict reward, rather than the magnitude of the reward predicted (as traditional, strength-based systems do). XCS is a complex system and differs from other systems in a number of ways. In order to isolate the source of XCS’s adaptive power, and, in particular to study the difference between strength and accuracy-based fitness, we introduce a system called Strength-Based XCS (SB–XCS), which is as similar to the accuracy-based XCS as we could make it, apart from being strength-based. This work provides a specification of SB–XCS and initial results for it and XCS on the 6 multiplexer and woods2 tasks. It then analyses the solutions found by the two systems and finds that each prefers a particular type of solution. A sequel paper provides further analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Anderson, C.W.: Learning and Problem solving with multilayer connectionist systems. PhD thesis, University of Massachusetts, Amherst, MA, USA (1986)

    Google Scholar 

  2. Bäck, T., Fogel, D.B., Michalewicz, Z. (eds.): Handbook of Evolutionary Computation. Institute of Physics Publishing/Oxford University Press (1997)

    Google Scholar 

  3. Barry, A.: XCS Performance and Population Structure within Multiple-Step Environments. PhD thesis, Queens University Belfast (2000)

    Google Scholar 

  4. Barto, A.G., Anandan, P., Anderson, C.W.: Cooperativity in networks of pattern recognizing stochastic learning automata. In: Proceedings of the Fourth Yale Workshop on Applications of Adaptive Systems Theory, pp. 85–90 (1985)

    Google Scholar 

  5. Bonelli, P., Parodi, A., Sen, S., Wilson, S.: NEWBOOLE: A Fast GBML System. In: International Conference on Machine Learning, San Mateo, California, pp. 153–159. Morgan Kaufmann, San Francisco (1990)

    Google Scholar 

  6. Booker, L.B.: Triggered rule discovery in classifier systems. In: David Schaffer, J. (ed.) Proceedings of the 3rd International Conference on Genetic Algorithms (ICGA 1989), George Mason University, pp. 265–274. Morgan Kaufmann, San Francisco (1989)

    Google Scholar 

  7. Butz, M.V., Goldberg, D.E., Stolzmann, W.: Investigating Generalization in the Anticipatory Classifier System. In: Deb, K., Rudolph, G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X. (eds.) PPSN 2000. LNCS, vol. 1917, Springer, Heidelberg (2000); Also technical report 2000014 of the Illinois Genetic Algorithms Laboratory

    Google Scholar 

  8. Butz, M.V., Kovacs, T., Lanzi, P.L., Wilson, S.W.: How XCS Evolves Accurate Classifiers. In: Spector, L., Goodman, E.D., Wu, A., Langdon, W.B., Voigt, H.-M., Gen, M., Sen, S., Dorigo, M., Pezeshk, S., Garzon, M.H., Burke, E. (eds.) GECCO-2001: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 927–934. Morgan Kaufmann, San Francisco (2001)

    Google Scholar 

  9. Butz, M.V., Wilson, S.W.: An Algorithmic Description of XCS. In: Lanzi, P.L., Stolzmann, W., Wilson, S.W. (eds.) IWLCS 2000. LNCS (LNAI), vol. 1996, pp. 253–272. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  10. Cribbs III, H.B., Smith, R.E.: What Can I do with a Learning Classifier System? In: Karr, C., Freeman, L.M. (eds.) Industrial Applications of Genetic Algorithms, pp. 299–320. CRC Press, Boca Raton (1998)

    Google Scholar 

  11. de Boer, B.: Classifier Systems: a useful approach to machine learning? Master’s thesis, Leiden University (1994), ftp://ftp.wi.leidenuniv.nl/pub/CS/MScTheses/deboer.94.ps.gz

  12. De Jong, K.A., Spears, W.M.: Learning Concept Classification Rules Using Genetic Algorithms. In: Proceedings of the International Joint Conference on Artificial Intelligence, Sidney, Australia, pp. 651–656 (1991)

    Google Scholar 

  13. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading (1989)

    MATH  Google Scholar 

  14. Greene, D.P., Smith, S.F.: COGIN: Symbolic induction using genetic algorithms. In: Proceedings 10th National Conference on Artificial Intelligence, pp. 111–116. Morgan Kaufmann, San Francisco (1992)

    Google Scholar 

  15. Greene, D.P., Smith, S.F.: Using Coverage as a Model Building Constraint in Learning Classifier Systems. Evolutionary Computation 2(1), 67–91 (1994)

    Article  Google Scholar 

  16. Holmes, J.H.: Evolution-Assisted Discovery of Sentinel Features in Epidemiologic Surveillance. PhD thesis, Drexel University (1996)

    Google Scholar 

  17. Jacobs, R.A.: Increased rates of convergence through learning rate adaptation. Neural Networks 1, 295–307 (1988)

    Article  Google Scholar 

  18. Kovacs, T.: Evolving Optimal Populations with XCS Classifier Systems. Master’s thesis, University of Birmingham (1996)

    Google Scholar 

  19. Kovacs, T.: XCS Classifier System Reliably Evolves Accurate, Complete, and Minimal Representations for Boolean Functions. In: Roy, Chawdhry, Pant (eds.) Soft Computing in Engineering Design and Manufacturing, pp. 59–68. Springer, Heidelberg (1997)

    Google Scholar 

  20. Kovacs, T.: Deletion schemes for classifier systems. In: Banzhaf, W., Daida, J., Eiben, A.E., Garzon, M.H., Honavar, V., Jakiela, M., Smith, R.E. (eds.) GECCO 1999: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 329–336. Morgan Kaufmann, San Francisco (1999)

    Google Scholar 

  21. Kovacs, T.: Strength or accuracy? A comparison of two approaches to fitness calculation in learning classifier systems. In: Wu, A.S. (ed.) 1999 Genetic and Evolutionary Computation Conference Workshop Program, pp. 258–265 (1999)

    Google Scholar 

  22. Kovacs, T.: Towards a theory of strong overgeneral classifiers. In: Martin, W., Spears, W.M. (eds.) Foundations of Genetic Algorithms, vol. 6, pp. 165–184. Morgan Kaufmann, San Francisco (2001)

    Chapter  Google Scholar 

  23. Kovacs, T.: What should a classifier system learn? In: Proceedings of the 2001 Congress on Evolutionary Computation (CEC 2001), pp. 775–782. IEEE Press, Los Alamitos (2001)

    Chapter  Google Scholar 

  24. Kovacs, T.: A Comparison of Strength and Accuracy-Based Fitness in Learning Classifier Systems. PhD thesis, School of Computer Science, University of Birmingham (2002)

    Google Scholar 

  25. Liepins, G.E., Wang, L.A.: Classifier System Learning of Boolean Concepts. In: Belew, R.K., Booker, L.B. (eds.) Proceedings ofthe Fourth International Conference on Genetic Algorithms (ICGA 1991), San Mateo, CA, pp. 318–323. Morgan Kaufmann Publishers, San Francisco (1991)

    Google Scholar 

  26. Oblow, E.M.: Implementing Valiant’s Learnability Theory using Random Sets. Technical Report ORNL/TM-11512R, Oak Ridge National Laboratory (1990)

    Google Scholar 

  27. Pagallo, G., Haussler, D.: Boolean feature discovery in empirical learning. Machine Learning 5(1), 71–100 (1990)

    Article  Google Scholar 

  28. Quinlan, J.R.: An empirical comparison of genetic and decision-tree classifiers. In: Proceedings of the Fifth International Machine Learning Conference, pp. 135–141 (1988)

    Google Scholar 

  29. Sen, S.: Classifier system learning of multiplexer function. The University of Alabama, Tuscaloosa, Alabama (1988) Class Project

    Google Scholar 

  30. Smith, R.E., Cribbs, H.B.: Is a Learning Classifier System a Type of Neural Network? Evolutionary Computation 2(1), 19–36 (1994)

    Article  Google Scholar 

  31. Wang, L.A.: Classifier System Learning of the Boolean Multiplexer Function. Master’s thesis, Computer Science Department, University of Tennessee, Knoxville, TN (1990)

    Google Scholar 

  32. Wilson, S.W.: Classifier Systems and the Animat Problem. Machine Learning 2, 199–228 (1987)

    Google Scholar 

  33. Wilson, S.W.: Bid competition and specificity reconsidered. Complex Systems 2, 705–723 (1989)

    Google Scholar 

  34. Wilson, S.W.: Perceptron Redux: Emergence of Structure. Physica D, 249–256 (1990)

    Google Scholar 

  35. Wilson, S.W.: ZCS: A Zeroth Level Classifier System. Evolutionary Computation 2(1), 1–18 (1994)

    Article  Google Scholar 

  36. Wilson, S.W.: Classifier Fitness Based on Accuracy. Evolutionary Computation 3(2), 149–175 (1995)

    Article  MATH  Google Scholar 

  37. Wilson, S.W.: Personal communication, November 21 (1996)

    Google Scholar 

  38. Wilson, S.W.: Generalization in the XCS classifier system. In: Koza, J., Banzhaf, W., Chellapilla, K., Deb, K., Dorigo, M., Fogel, D.B., Gar-zon, M.H., Goldberg, D.E., Iba, H., Riolo, R. (eds.) Genetic Programming 1998: Proceedings of the Third Annual Conference, pp. 665–674. Morgan Kaufmann, San Francisco (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kovacs, T. (2003). XCS’s Strength-Based Twin: Part I. In: Lanzi, P.L., Stolzmann, W., Wilson, S.W. (eds) Learning Classifier Systems. IWLCS 2002. Lecture Notes in Computer Science(), vol 2661. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-40029-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-40029-5_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20544-9

  • Online ISBN: 978-3-540-40029-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics