Skip to main content

XCS’s Strength-Based Twin: Part II

  • Conference paper
Learning Classifier Systems (IWLCS 2002)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2661))

Included in the following conference series:

Abstract

This sequel continues the comparison of the twins XCS and SB–XCS. We find they tend towards different representations of the solution and distinguish three types of representations which rule populations can form, namely complete maps, partial maps, and default hierarchies. Following this we evaluate the respective advantages and disadvantages of complete and partial maps at some length. We conclude that complete maps are likely to be superior for sequential tasks. For non-sequential tasks, partial maps have the advantage of parsimony whereas complete maps can take advantage of subsumption deletion. It is unclear which is more significant. We also conclude that partial maps are likely to be suitable for Pittsburgh classifier systems and supervised learning systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Booker, L.B.: Do We Really Need to Estimate Rule Utilities in Classifier Systems? In: Lanzi et al. [18], pp. 125–142

    Google Scholar 

  2. Booker, B., Goldberg, D.E., Holland, J.H.: Classifier systems and genetic algorithms. Artificial Intelligence 40, 235–282 (1989)

    Article  Google Scholar 

  3. Bull, L., Hurst, J.: ZCS Redux. To appear in Evolutionary Computation (2002)

    Google Scholar 

  4. Butz, M.V., Kovacs, T., Lanzi, P.L., Wilson, S.W.: How XCS Evolves Accurate Classifiers. In: Spector, L., Goodman, E.D., Wu, A., Langdon, W.B., Voigt, H.M., Gen, M., Sen, S., Dorigo, M., Pezeshk, S., Garzon, M.H., Burke, E. (eds.) GECCO 2001: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 927–934. Morgan Kaufmann, San Francisco (2001)

    Google Scholar 

  5. Dorigo, M.: New perspectives about default hierarchies formation in learning classifier systems. In: Ardizzone, E., Sorbello, F., Gaglio, S. (eds.) AI*IA 1991. LNCS (LNAI), vol. 549, pp. 218–227. Springer, Heidelberg (1991)

    Google Scholar 

  6. Goldberg, D.E.: Computer-Aided Gas Pipeline Operation using Genetic Algorithms and Rule Learning. PhD thesis, The University of Michigan (1983)

    Google Scholar 

  7. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading (1989)

    MATH  Google Scholar 

  8. Hartley, A.: Genetics Based Machine Learning as a Model of Perceptual Category Learning in Humans. Master’s thesis, University of Birmingham (1998)

    Google Scholar 

  9. Hartley, A.: Accuracy-based fitness allows similar performance to humans in static and dynamic classification environments. In: Banzhaf, W., Daida, J., Eiben, A.E., Garzon, M.H., Honavar, V., Jakiela, M., Smith, R.E. (eds.) GECCO 1999: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 266–273. Morgan Kaufmann, San Francisco (1999)

    Google Scholar 

  10. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor (1975), Republished by the MIT press (1992)

    Google Scholar 

  11. Holland, J.H.: Escaping brittleness: The possibilities of general-purpose learning algorithms applied to parallel rule-based systems. In: Mitchell, T., Michalski, R., Carbonell, J. (eds.) Machine learning, an artificial intelligence approach, vol. II, ch. 20, pp. 593–623. Morgan Kaufmann, San Francisco (1986)

    Google Scholar 

  12. Holland, J.H., Booker, L.B., Colombetti, M., Dorigo, M., Goldberg, D.E., Forrest, S., Riolo, R.L., Smith, R.E., Lanzi, P.L., Stolzmann, W., Wilson, S.W.: What is a Learning Classifier System. In: Lanzi et al. [18], pp. 3–32

    Google Scholar 

  13. Holland, J.H., Holyoak, K.J., Nisbett, R.E., Thagard, P.R.: Induction. Processes of Inference, Learning and Discovery. The MIT Press, Cambridge (1986)

    Google Scholar 

  14. Holland, J.H., Reitman, J.S.: Cognitive systems based on adaptive algorithms. In: Waterman, D.A., Hayes-Roth, F. (eds.) Pattern-directed inference systems. Academic Press, New York (1978); Reprinted in: Fogel, D.B. (Ed.): Evolutionary Computation. The Fossil Record. IEEE Press, Los Alamitos (1998) ISBN: 0-7803-3481-7

    Google Scholar 

  15. Kovacs, T.: Strength or Accuracy? Fitness Calculation in Learning Classifier Systems. In: Lanzi et al. [18], pp. 143–160

    Google Scholar 

  16. Kovacs, T.: A Comparison of Strength and Accuracy-Based Fitness in Learning Classifier Systems. PhD thesis, School of Computer Science, University of Birmingham (2002)

    Google Scholar 

  17. Kovacs, T., Kerber, M.: What makes a problem hard for XCS? In: Lanzi, P.L., Stolzmann, W., Wilson, S.W. (eds.) IWLCS 2000. LNCS (LNAI), vol. 1996, pp. 80–99. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  18. Lanzi, P.L., Stolzmann, W., Wilson, S.W. (eds.): IWLCS 1999. LNCS (LNAI), vol. 1813, p. 243. Springer, Heidelberg (2000)

    Book  Google Scholar 

  19. Riolo, R.L.: Bucket Brigade Performance: II. Default Hierarchies. In: Grefenstette, J.J. (ed.) Proceedings of the 2nd International Conference on Genetic Algorithms (ICGA 1987), Cambridge, MA, 196–201. Lawrence Erlbaum Associates, Mahwah (1987)

    Google Scholar 

  20. Smith, R.E.: Default Hierarchy Formation and Memory Exploitation in Learning Classifier Systems. PhD thesis, University of Alabama (1991)

    Google Scholar 

  21. Smith, R.E., Goldberg, D.E.: Variable default hierarchy separation in a classifier system. In: Rawlins, G.J.E. (ed.) Proceedings of the First Workshop on Foundations of Genetic Algorithms, San Mateo, July 15–18, pp. 148–170. Morgan Kaufmann, San Francisco (1991)

    Google Scholar 

  22. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (1998)

    Google Scholar 

  23. Wilson, S.W.: Classifier Systems and the Animat Problem. Machine Learning 2, 199–228 (1987)

    Google Scholar 

  24. Wilson, S.W.: Bid competition and specificity reconsidered. Complex Systems 2, 705–723 (1989)

    Google Scholar 

  25. Wilson, S.W.: Classifier Fitness Based on Accuracy. Evolutionary Computation 3(2), 149–175 (1995)

    Article  Google Scholar 

  26. Wyatt, J.L.: Exploration and Inference in Learning from Reinforcement. PhD thesis, Dept. of Artificial Intelligence, University of Edinburgh (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kovacs, T. (2003). XCS’s Strength-Based Twin: Part II. In: Lanzi, P.L., Stolzmann, W., Wilson, S.W. (eds) Learning Classifier Systems. IWLCS 2002. Lecture Notes in Computer Science(), vol 2661. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-40029-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-40029-5_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20544-9

  • Online ISBN: 978-3-540-40029-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics