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Abstract. Three-dimensional facial information is very important for
assessing the influence of clef lip repair and measuring the facial growth
between cleft and non-cleft children. In this paper, 3D techniques for
measuring facial soft tissue change and extracting useful 3D shape infor-
mation are presented. Firstly, a robust 3D registration algorithm which
combines landmark-based and surface-based registration techniques is
described. It uses a new surface-based registration algorithm - HICP algo-
rithm to refine landmark-based alignment. We then describe a graphical
user interface for manually extracting 3D facial landmarks. Experimen-
tal tests on both simulated surface data and real facial scans have been
carried out to validate the HICP algorithm.

1 Introduction

Ora-facial clefting is the most common birth defect in the cranio-facial region.
The main challenge posed by cleft lip and palate is the achievement of an early
morphological and functional repair of the affected structures and to maintain
the normal development of affected children. Two research projects, funded by
the chief Scientists Office of the Scottish Executive and the National Lottery
Board through the Cleft Lip and Palate Association, are currently being run
by the Departments of Oral Surgery, Computing Science and Statistics at the
University of Glasgow. The studies involve capturing multiple 3D images of
both cleft and normal children at different stages throughout the first five years
of life. The overall aim of the research is to undertake advanced morphometric
assessment of non-cleft, cleft, and surgically-managed cleft patients to assess
the influence of surgical lip repair on facial morphology. This will be achieved
through the development of 3D-based surface imaging, anatomy and analysis
techniques.

This paper presents a robust 3D registration technique after a brief descrip-
tion of the 3D imaging system for capturing facial models. The registration algo-
rithm combines landmark-based and surface-based registration techniques and
uses a modified Iterative Closest Point (ICP) [1] algorithm to refine landmark-
based alignment. Facial soft tissue change in terms of surface area and soft tissue
volume, before and after surgical treatment can then be measured based on the
aligned models. A user-friendly graphical interface is developed for manually ex-
tracting 3D facial landmarks for statistical shape analysis [2]. The registration
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algorithm is validated by experimental tests on both simulated surface data and
real facial scans.

2 3D Facial Data Acquisition System

The human face is a three-dimensional object, therefore accurate 3D information
of facial morpholgy is very important for auditing surgical outcome of cleft lip
repair and measuring facial growth. The 3D image acquisition system employed
in the research projects is the C3D [3] system developed by the collaboration
between The Turing Institute and Glasgow University.

In this system, a pair of video cameras is placed at each side of the patient’s
face, which then takes a stereo picture. The cameras and the light source are
angled at 60 degrees at a distance of 1.75 meters from the patient. A computer-
controlled texture flash projector illuminates the subject with random texture
pattern to facilitate stereo matching. The image capture time is about 30 mil-
lisecond and a personal computer produces the 3D facial model. Detailed system
description can be found in [3]. C3D system has the following characteristics
which suit this application.

– Fast facial surface capture, approximately 30 ms, especially suitable for cap-
turing young children’s faces.

– High resolution cameras: 1000 x 800 pixels.
– Accuracy of localising facial landmarks to 0.5mm.
– No exposure to harmful radiation and therefore suitable for routine use.
– Simple input operation and quick 3D display.

Fig 1 shows a cleft child’s face captured by the C3D system. The 3D facial model
is represented by triangle meshes or 3D surface points which can be directly used
for measurement and model registration. This system has already been installed
in Glasgow Dental Hospital and Yorkhill Hospital for Sick Children and the data
collection is in progress.

3 Method

Techniques in image processing, computer vision and statistical shape analysis
are being developed to provide the facility for measuring facial configurations
in three dimensions. These techniques include registering facial models, measur-
ing surface area and volume difference, extracting facial landmarks, performing
statistical-based shape analysis and so on.

3.1 Measure Facial Soft Tissue Changes

To conduct the assessment of facial soft tissue changes, the change of surface
area and soft tissue volume, before and after surgical treatment, a robust 3D
registration technique has been developed to align two facial models captured at
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(a) Shaded facial sur-
face.

(b) Facial surface dis-
played by triangle mesh.

Fig. 1. 3D cleft facial model captured by C3D system.

different times. This algorithm is a combination of landmark-based and surface-
based registration techniques.

Firstly, corresponding 3D facial landmarks are manually extracted from two
models using a purpose-built graphical interface (see 3.2). Landmark-based reg-
istration is then carried out to compute the relative rotation and translation
between two models using a Singular Value Decomposition (SVD) approach [4].
The computed transformation is used as the initial guess in the following surface-
based registration.

The surface-based registration algorithm we developed is a modified version
of ICP [1] algorithm and directly uses the 3D surface points captured from the
C3D system to calculate the pose parameters. It shares the similar idea to ICP
algorithm which is to register a 3D point set P having Np points {pi}, i =
1, ..., Np with a second 3D point set M = {mi}, i = 1, ..., Nm by calculating
the closest point between an individual point pi and M based on the Euclidean
distance metric. After the set of closest points has been computed, a rigid body
transformation is determined which minimises the equation

∑
2 =

N∑
i=1

∥∥mi − (Rpi + T )2
∥∥ (1)

where pi is a 3D point with x−, y− and z−coordinate in the first point set and
mi is its closest point in the second point set; R represents rotation matrix and
T is the translation vector. The registration F (R, T ) is then applied to {pi} and
the process repeated until the change in mean square error falls below a pre-set
tolerance.



1054 Z. Mao, P. Sebert, and A.F. Ayoub

The difference between our method and the original ICP algorithm is that
our algorithm considers outlier problem and instead of using all the closest point
pairs obtained in each iteration for pose (R, T ) estimation, a weight wi is com-
puted for every closest point pair. Pose estimation is then computed by minimis-
ing

∑
2 =

N∑
i=1

wi

∥∥mi − (Rpi + T )
∥∥2 (2)

The method for calculating weight wi can be expressed as

wi =
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∥∥∥εi

∥∥∥ ≤ cS;

0 otherwise

(3)

where εi = mi − (Rpi + T ), the residual error (distance between closest point
pair); S is a scale estimator that is set to median of absolute distance and c is a
tuning constant which was set to 6 as suggested in [5].

Equation (3) was firstly presented by Haralick et al [5] for estimating pose
parameters when the point correspondences between two data sets are known
and hence we name our surface registration algorithm HICP. Our contribution
in developing HICP algorithm is that we generalized the weighted least-squares
techniques to iteratively locating the point correspondences and then calculating
the transformation parameters and updating the data. The original design of the
weighted least-squares algorithm [5] assumes that the point correspondence is
known while in our algorithm a priori point correspondence is not required.
Another difference from the original ICP algorithm is that a SVD algorithm
[4] was used to calculate the transformation rather than using quaternions and
accordingly reduces the complexity of the algorithm.

After models are properly aligned using the proposed method, soft tissue
changes in surface area and volume can be measured. This registration technique
can be further applied to determine facial symmetry plane [6].

3.2 Facial Landmark Extraction

A user-friendly software package has been developed to manually extract homol-
ogous facial landmarks that are required for both statistical shape analysis and
approximate registration prior to applying the HICP algorithm to achieve close
registration. This software is capable of displaying multiple facial models from
different viewpoints at the same time. Users can easily move, zoom or rotate the
facial models to a convenient position when placing landmarks. Fig 2 shows an
example of the software interface. Circles indicate the positions of landmarks and
vectors give the direction of surface normals at this landmark. The procedure
of landmark detection can be further automated by using Active Shape Model
(ASM), snakes or curvature-based algorithm.
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Fig. 2. Graphical interface for facial landmark extraction.

4 Experimental Results

The surface registration method – HICP algorithm has been tested using both
simulated data and real facial scans. Measurement of surface volume difference
was carried out on dummy facial models with known ground truth.

4.1 Test of Registration Algorithms with Simulated Surface Data

Comparisons of the performance of HICP algorithm with original ICP algorithm
and another modified ICP algorithm developed by Zhang [7] were made using
simulated data. Zhang’s registration algorithm also considers outlier problem
and uses a statistical-based algorithm to computer the weight. We refer Zhang’s
ICP algorithm as ZICP in the following comparisons.

The simulated data used in the experiment is mathematically constructed
using the function z = xe−x2−y2

, x ∈ [−1, 1], y ∈ [−2, 2] with intervals of 0.1 in
x-direction and 0.2 in y-direction, generating 441 3D surface points. The surface
data is then scaled up by a factor of 25. This surface was chosen because it
has significant variability in gradient over the interval given. Fig 3 plots the
simulated surface data. A random rotation along three axes ω = 3.05, φ = 8.2
and κ = 2.1 and a translation of tx = 0.51, ty = 0.13, tz = −0.26 are applied to
the original surface data to produce the transformed surface (Fig 4).

The performances of the three algorithms under different conditions were
compared. All the results and figures given below are repeated and averaged by
20 tries. The registration errors in rotation are measured in degree and errors
in translation are given in absolute values with a comparison of data range
x ∈ [−25, 25], y ∈ [−50, 50], z ∈ [−10.7, 10, 7].

Comparison of Performances under Gaussian Noise. Zero-mean Gaus-
sian noise with a standard deviation equal to 1 is added to the x−, y− and
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Fig. 3. The simulated original 3D sur-
face.

Fig. 4. The transformed 3D surface.

z−coordinates of the transformed surface. The reason for chosen Gaussian noise
is that the uncertainty in a 3D point reconstructed from stereo is very similar
to Gaussian noise and usually modeled as Gaussian [7]. This noise is then mul-
tiplied by a scale factor c to simulate different levels of noise. C ranges from 0
to 1.2 with an incremental interval of 0.2. Fig 5 plots the registration results
from the three algorithms. As we can see, they have similar performances under
Gaussian noise.
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Fig. 5. Performances of three registration algorithms under Guassian noise.
Translational and rotational errors as function of noise level.

Comparison of Performances with Outliers. In some cases only a small
part of surface data is exposed to noise or has high levels of noise (we usually
call it outlier) while other part of data is relatively good. To simulate such
situation, uniform noise drawn from [−2, 2] is added to part of the transformed
data. Fig 6 shows the performances of the three registration algorithms when
the percentage of outlier increases. Fig 7 plots the rates of convergence (number
of iterations required) when the changes of root mean square (RMS) distance
between the original surface and the transformed surface falls below a preset
threshold (1e-10). In this case, our algorithm (HICP) has the best performance
and the fastest convergence rate, especially when the percentage of ourlier is less
than 50% which is usually the case in real 3D facial scans.
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Fig. 6. Performances of the registration algorithms as a function of percentage
of outlier.

0

2

4

6

8

10

12

14

0 10 20 30 40 50 60

Percentage of outlier

N
u

m
b

er
 o

f 
it

er
at

io
n

s 
fo

r 
co

n
ve

rg
en

ce

ICP HICP ZICP

Fig. 7. The rates of the registration algorithms as a function of percentage of
outlier.

Comparison of Performances Related to the Region of Overlap. The
worst case in registering real surface is that the two surface patches are only
partly overlapping and noise is also present. In the third test, zero-mean Gaussian
noise with a standard deviation of 0.5 is added to the x−, y− and z−coordinates
of the transformed surface to simulate the presence of noise. At the same time,
we vary the percentage of overlap between two surface patches. Fig 8 shows the
performances of the three algorithms under this situation and Fig 9 plots the
rate of convergence as the percentage of overlap decreases. The HICP algorithm
has the best performance.

As has been shown from the above three tests using the simulated surface
data, our surface registration algorithm - HICP has the overall best performance.
It’s especially robust in the presence of outlier and when the two surfaces to be
aligned are only partially overlapped. The convergent speed of HICP is also
stable and better than the other two algorithms.

4.2 Test of HICP Using Real Facial Scans

HICP algorithm is also validated using real facial scans captured at different
times. Two case studies are reported.
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Fig. 8. Performances of the registration algorithms as a function of percentage
of overlap.
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Fig. 9. The rates of the registration algorithms as a function of percentage of
overlap.

Case 1: registration of the 3D facial models of the same person captured at
different times.

The face of a same person was scanned using the C3D system at different
positions. The 3D facial models were generated at a resolution of 5mm. Fig 10 (a)
displays the two facial models before registration, one with solid surface and the
other with triangle mesh. The surface patch selected for registration is displayed
as meshes in Fig 10 (b). The poses of these two models were significantly different
before registration, and the RMS between closest point pair was 51.056mm.
After 50 iterations using HICP algorithm, RMS was reduced to 1.773mm and
the aligned surfaces is shown in Fig 11.

Case 2: Measure facial growth using controlled facial models.
To simulating facial growth, a dummy facial model is scanned (Fig 12. (a))

and then material was applied to the face (Fig 12 (b)). It produces similar effect
to facial growth. The ground truth for the volume added in is 11.533cm3. Both
models were produced at a resolution of 2mm by the C3D system and the HICP
algorithm was used to align them. After 28 iterations the algorithm converged
at a RMS distance of 1.0mm. A Volume difference of 11.679cm3 was obtained
based on the aligntment. Comparing with the ground truth, the difference is
only 1.3%.
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(a) Initial facial
positions.

(b) Region for
registration.

Fig. 10. Facial surfaces after registration.

 

Fig. 11. Facial surfaces after
registration.

(a) before facial growth (b) after facial growth

Fig. 12. Dummy facial model for the simulation of facial growth

5 Discussion and Further Work

In this paper, techniques for capturing 3D facial models and measuring facial
soft tissue changes are presented. A new registration algorithm - HICP algorithm
is developed to align 3D facial surface. This algorithm was tested and compared
with other registration algorithms using simulated data. The results show that
our algorithm has better performance when outlier is present or when the two
surface patches are only partially overlapped. Experimental results on the real
facial scans and controlled model indicate that the C3D system and the proposed
measurement techniques are reliable and capable of detecting small changes in
facial soft tissue morphology.

However, this work is still in its initial stage and clinical data collection
is still being carried out. When data capture is completed, statistical shape
analysis method, such as Procrustes analysis [8], Principal Component Analysis
(PCA), Euclidean Distance Matrix Analysis (EDMA) [9] and Thin-plate Spline
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(TPS) visualisation [10] will be used to measure facial growth and to establish
statistical models for normal faces and deformed faces due to facial cleft. We
believe that by applying 3D capture, analysis and measurement techniques, a
more comprehensive understanding of the effect of facial cleft/palate repair on
facial soft tissue morphology will be achieved.
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