Abstract
A robust method for the removal of non-cerebral tissue in T1-weighted magnetic resonance (MR) brain images is presented. This procedure, often referred to as skull stripping, is an important step in neuroimaging. Our novel approach consists of a single morphological operation, namely a modified three-dimensional fast watershed transform that is perfectly suited to locate the brain, including the cerebellum and the spinal cord.
The main advantages of our method lie in its simplicity and robustness. It is simple since neither preprocessing of the MRI data nor contour refinement is required. Furthermore, the skull stripping solely relies on one basic anatomical fact, i.e. the three-dimensional connectivity of white matter. As long as this feature is observed in the image data, a robust segmentation can be guaranteed independently from image orientation and slicing, even in presence of severe intensity non-uniformity and noise. For that purpose, the watershed algorithm has been modified by the concept of pre-flooding, which helps to prevent over-segmentation, depending on a single parameter. The automatic selection of the optimal parameter as well as the applicability are discussed based on the results of phantom and clinical brain studies.
Chapter PDF
Similar content being viewed by others
Keywords
References
Kikinis, R., Shenton, M.E., Gerig, G., Martin, J., Anderson, M., Metcalf, D., Guttmann, C.R.G., McCarley, R.W., Lorensen, W., Cline, H., Jolesz, F.A.: Routine Quantitative Analysis of Brain and Cerebrospinal Fluid Spaces with MR Imaging. J. Magnetic Resonance Imaging 2, 619–629 (1992)
Kapur, T., Grimson, W.E.L., Wells, W.M., Kikinis, R.: Segmentation of Brain Tissue from Magnetic Resonance Images. Medical Image Analysis 1(2), 109–127 (1996)
Sandor, S., Leahy, R.: Surface-Based Labeling of Cortical Antomy using a Deformable Atlas. IEEE Trans. Med. Imaging 16(1), 41–54 (1997)
Aboutanos, G.B., Dawant, B.M.: Automatic Brain Segmentation and Validation: Image-Based versus Atlas-Based Deformable Models. In: Proc. SPIE Med. Imaging 1997, February 1997, pp. 299–310 (1997)
Freeborough, P.A., Fox, N.C., Kitney, R.I.: Interactive Algorithms for the Segmentation and Quantification of 3D MRI Brain Scans. Comput. Metho. Progr. Biomed. 53(1), 15–25 (1997)
Atkins, M.S., Mackiewich, B.T.: Fully Automatic Segmentation of the Brain in MRI. IEEE Trans. Med. Imaging 17(1), 98–107 (1998)
Goldszal, A.F., Davatzikos, C., Pham, D.L., Yan, M.X.H., Bryan, R.N., Resnick, S.M.: An Image Processing System for Qualitative and Quantitative Volumetric Analysis of Brain Images. J. Comput. Assist. Tomogr. 22(5), 827–837 (1998)
Dale, A.M., Fischl, B., Sereno, M.I.: Cortical Surface-Based Analysis: I. Segmentation and Surface Reconstruction. NeuroImage 9, 179–194 (1999)
Rehm, K., Shattuck, D., Leahy, R., Schaper, K., Rottenberg, D.: Semi-Automated Stripping of T1 MRI Volumes: I. Consensus of Intensity- and Edge-Based Methods. In: Proc. 5th Int. Conf. on Functional Mapping of the Human Brain HBM 1999, Düsseldorf, poster no. 86 (1999), abstract pub. in NeuroImage
Hojjatoleslami, S.A., Kruggel, F., von Cramon, D.Y.: Segmentation of White Matter Lesions from Volumetric MR Images. In: Taylor, C., Colchester, A. (eds.) MICCAI 1999. LNCS, vol. 1679, pp. 52–61. Springer, Heidelberg (1999)
Wells, W.M., Grimson, W.E.L., Kikinis, R., Jolesz, F.A.: Adaptive Segmentation of MRI data. IEEE Trans. Med. Imaging 15, 429–443 (1996)
Pham, D.L., Prince, J.L.: Adaptive Fuzzy Segmentation of Magnetic Resonance Images. IEEE Trans. Med. Imaging 18(9), 737–752 (1999)
Maes, F., Van Leemput, K., DeLisi, L.E., Vandermeulen, D., Suetens, P.: Quantification of Cerebral Gray and White Matter Asymmetry from MRI. In: Taylor, C., Colchester, A. (eds.) MICCAI 1999. LNCS, vol. 1679, pp. 348–357. Springer, Heidelberg (1999)
Toga, A.W.: Brain Warping. Academic Press, San Diego (1999)
Frackowiak, R.S.J., Friston, K.J., Frith, C.D., Dolan, R.J., Mazziotta, J.C.: Human Brain Function. Academic Press, San Diego (1997), Statistical Parametric Mapping SPM, http://www.fil.ion.ucl.ac.uk/
Worth, A.J., Makris, N., Caviness Jr., V.S., Kennedy, D.N.: Neuroanatomical Segmentation in MRI: Technological Objectives. Int. J. Pattern Rec. Art. Int. 11(8), 1161–1187
Serra, J.: Image Analysis and Mathematical Morphology. Academic, London (1982)
Mittelhaeusser, G., Kruggel, F.: Fast Segmentation of Brain Magnetic Resonance Tomograms. In: Ayache, N. (ed.) CVRMed 1995, vol. 905. Springer, Heidelberg (1995)
Cocosco, C.A., Kollokian, V., Kwan, R.K.-S., Evans, A.C.: BrainWeb: Online Interface to a 3D MRI Simulated Brain Database. In: Proc. 3rd Int. Conf. on Functional Mapping of the Human Brain HBM 1997, Copenhagen (1997); NeuroImage 5(4): part 2/4, S425 (May 1997), http://www.bic.mni.mcgill.ca/brainweb/
Collins, D.L., Zijdenbos, A.P., Kollokian, V., Sled, J.G., Kabani, N.J., Holmes, C.J., Evans, A.C.: Design and Construction of a Realistic Digital Brain Phantom. IEEE Trans. Med. Imaging 17(3), 463–468 (1998)
Schenk, A., Breitenborn, J., Selle, D., Schindewolf, T., Böhm, D., Spindler, W., Jürgens, H., Peitgen, H.-O.: ILabMed-Workstation – Eine Entwicklungsumgebung für radiologische Anwendungen. In: Proc. Bildverarbeitung für die Medizin 1999, pp. 238–242. Springer, Heidelberg (1999)
Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C. Cambridge University Press, Cambridge (1988/1995)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2000 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hahn, H.K., Peitgen, HO. (2000). The Skull Stripping Problem in MRI Solved by a Single 3D Watershed Transform. In: Delp, S.L., DiGoia, A.M., Jaramaz, B. (eds) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2000. MICCAI 2000. Lecture Notes in Computer Science, vol 1935. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-40899-4_14
Download citation
DOI: https://doi.org/10.1007/978-3-540-40899-4_14
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-41189-5
Online ISBN: 978-3-540-40899-4
eBook Packages: Springer Book Archive