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Abstract. This paper presents a deformable model for automatically segmenting
objects from volumetric MR images and obtaining point correspondences, using
geometric and statistical information in a hierarchical scheme. Geometric in-
formation is embedded into the model via an affine-invariant attribute vector,
which characterizes the geometric structure around each model point from a lo-
cal to a global level. Accordingly, the model deforms seeking boundary points
with similar attribute vectors. This is in contrast to most deformable surface
models, which adapt to nearby edges without considering the geometric struc-
ture. The proposed model is adaptive in that it initially focuses on the most reli-
able structures of interest, and subsequently switches focus to other structures
as those become closer to their respective targets and therefore more reliable.
The proposed techniques have been used to segment boundaries of the ventri-
cles, the caudate nucleus, and the lenticular nucleus from volumetric MR im-
ages.

1 Introduction

Deformable models have been extensively used as segmentation tools in medical im-
aging applications. An excellent review of deformable models can be found in [1].

Most boundary-based deformable models adapt to nearby edges under forces ema-
nating from the immediate neighbors and from image gradients. This can cause unre-
alistic deformations as individual points are pulled towards noisy or fragmented edges.
Moreover, it will make the deformable model very sensitive to initialization. To rem-
edy this, prior knowledge in the form of normal statistical variation can be incorpo-
rated into the formulation of a deformable model [2], in order to constrain the possible
deformations. Chen and Kanada [11] used the statistics of anatomical variations as
prior knowledge to guide the process of registering the statistical atlas with a particu-
lar subject. Cootes et al [3] have developed an active shape model (ASM), based on
the statistics of labeled samples. An improvement of ASM has been presented in [12].
Following the seminal work of Cootes et al, a flexible Fourier surface model [4] was
proposed based on a hierarchical parametric object description rather than a point
distribution model. Finally, some researchers consider capturing statistical information
from the preprocessed covariance matrix [5].
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The aforementioned statistical models can also be implemented hierarchically,
since hierarchical implementation usually increases the likelihood of finding the glob-
ally optimal match. A review of the hierarchical strategies can be found in [6].

In this paper we present a deformable model for segmentation and definition of
point correspondences in brain images, which incorporates geometric as well as sta-
tistical information about the shapes of interest, in a hierarchical fashion. Our method-
ology has three novel aspects, which are briefly described next.

First, an attribute vector is attached to each model point, and it is used to charac-
terize the geometric structure of the model around that point, from a local to a global
scale. Our model only deforms the surface segments to the image boundaries with
similar geometric structure, based on an energy term that favors similar attribute vec-
tors. The attribute vectors are essential in our formulation, since they distinguish dif-
ferent parts of a boundary according to their shape properties, and therefore they guide
the establishment of point-correspondences between the model and an individual
anatomy. This is in contrast to most deformable surface models.

The second contribution of our model is in its adaptive formulation. In particular,
it can shift focus from one structure to another. The model adaptivity is accomplished
both via its hierarchical deformation strategy and via an adaptive focus statistical
shape model. This addresses the limitations of previous statistical models. Our adap-
tive focus statistical model accounts for size differences between different structures
when determining the parameters of shape variation. Moreover, it allows the algorithm
to selectively focus on certain structures, by biasing the statistics of the model by the
statistics of the structures of interest.

Finally, our third contribution is in the training of the statistical shape model. In
particular, we build our surface models in a way that point correspondences are de-
fined for the training samples. Although this is readily done in 2D, it is very difficult
in 3D. Consequently, other investigators relied on parametric representations that are
not necessarily based on point correspondences [4].

2 Adaptive-Focus Deformable Model (AFDM)

In our approach, we first construct a model that represents the typical anatomy of a
number of structures by interconnected surfaces (c.f. Fig 1). This is provided in Sec-
tion 2.1. In Section 2.2, we attach an attribute vector to each vertex of these surfaces.
In Sections 2.3 and 2.4, we describe the mechanism that deforms the model to an
individual MR volumetric image, and the corresponding energy function being mini-
mized. Finally, in Section 2.5 we present a hierarchical and adaptive-focus strategy for
the model deformation.

2.1 Model Description

In the following, we will give definitions for vertices and their neighborhood layers on
each surface, and as well as on the interconnections of the surfaces of the model.

Let’s assume that there are M separate surfaces ¥’ (1<i < M ) in the model, and

. i ; i i i i .
that the i-th surface V' has N, vertices V| = [xj Ay zj] , where 0<j<(N,-1).
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Vertex Vj' is assumed to have R(Vj") neighborhood layers, and its /-th neighborhood

layer has §,(V/) neighboring vertices, nb’?(Vf)={7'bl’1,n, f 0Sm<S,(Vj.")}- Here,

layer / is in the range 1</< R(V}). The neighborhood layers are constructed so that

no vertex is repeated twice in the neighborhood of another vertex.

In certain applications, some surfaces in the model are in proximity to each other.
Therefore, we impose additional constraints that prevent these surfaces from inter-
secting in the deformation procedure. In particular, if the 3D Euclidean distance be-
tween vertices belonging to two different surfaces is below a threshold, the vertices
are connected as first-layer neighbors. For example, for each vertex of the boundary of
the caudate nucleus that is in contact with the ventricular surface, an additional neigh-
bor is selected as its closest vertex in the ventricular surface (c.f. Fig 1a). If two verti-
ces belonging to the same surface are close enough, based on their 3D Euclidean dis-
tance, they are also joined with each other. This helps prevent self-intersections of the

surfaces.
Caudate nuclcus/ “audate nucleus A?
0 N QLcmicu]ar

Lenticular

nucleus ventricles

OA/ ~ nucleus / \
(a) Q

Fig. 1. A model with five surfaces: (a) a cross-section of the 3D model of (b). In (a), any vertex
in the dotted ellipses is connected with another vertex of the model.

2.2 Affine-Invariant Attribute Vector

To describe shape characteristics of various scales, an affine-invariant vector of geo-
metric attributes in 2D has been used in [7,8]. Each attribute is the area of a triangle
formed by a model point, P, and its two neighboring points, P__ and P, _, in the v,-th

neighborhood layer (c.f. Fig 2a). In the following, we extend the definition of the 2D
attribute to the 3D, by using the volume of a tetrahedron (c.f. Fig 2b).
The volume of the tetrahedron, formed by the nearest neighbors of vertex ¥, re-

flects the local structure of the surface around vertex J;. While, the volumes of larger
tetrahedrons represent more global properties of the surface around vertex ;. More

importantly, even vertices of similar curvatures might have very different attribute
vectors, depending on the number of neighborhood layers.

Any four points in the 3D space can establish a tetrahedron. Let’s generally denote
these four points by {WJ_‘ j :0,1,2,3}, where W, = [x,- Y,z ]T. The volume of this
tetrahedron is:

Xy X, X, X4
Volume(W,,W, W, ,W,) = Yo Vi V2o V3.

Zy Z; Z, Z

1 1 1 1



Adaptive-Focus Statistical Shape Model for Segmentation of 3D MR Structures 209

If this tetrahedron is linearly transformed by a 4x4 matrix 4, then the volume of
the new tetrahedron is |4|- Volume(W,,W,,W, W, ). Thus, it is relatively invariant to
linear transformation [7].

The definition of the volume of a tetrahedron can be used to design an attribute
vector for each vertex on the model surface. For a particular vertex ¥/, we can select
any three points from the /-th neighborhood layer (see Fig 2b). The volume of the
tetrahedron formed by these four vertices is defined by f, (V;). We compile the vol-

umes calculated for different neighborhood layers into an attribute vector for vertex
Vi, FOU)=[LV) L)) .. fR(V/’)(I/ji)]’ where R(V}) is the number of neighbor-
hood layers around vertex ;. The attribute vector F(V}) captures different levels of
shape information around vertex 7.

The attribute vector can be made affine-invariant, by normalizing it on the whole

model, i.e.
M N, RU)

Frp=rFoH/ 33 3

i=1 j=1 =1

>

L0

A .

where F(V;):[JA’](V;) fz(Vj") e Srwn,@D]. Unlike curvature, the normalized

J

attribute vectors are affine-invariant.

P
(a) 2D

Fig. 2. The attribute vector in 2D and 3D.

2.3 Energy Definition

The goal of our deformable model is to define point correspondences, in addition to
segmenting structures of interest. Our premise is that the attribute vector, if rich
enough, uniquely characterizes different parts of a boundary of a structure. Therefore,
in the definition of the energy function to be minimized, we include a term that reflects
the difference between the attribute vectors of the model and individual surface. An
obvious difficulty in this approach is that the attribute vector of an individual surface
cannot be obtained directly from the corresponding MR images, since it is based on a
triangularized surface. We overcome this difficulty by deforming our model via a
sequence of global and local transformations. Since the attribute vectors are invariant
to linear transformation, they remain relatively unchanged in this deformation process.
Effectively, this defines a segmentation, but also a set of point correspondences based
on a similarity between attribute vectors.
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The energy that our deformable model minimizes is defined as follows:

M N, M N,
E=YY0,E,=YY0,E" +E5) )

i=l j=1 =1 j=I

The parameter @, ; determines the relative weight for the local energy term E, . E, |,

defined for ¥}, is composed of two terms: ™' and E%". The term E defines

the degree of difference between the model and one of its deformed configurations,
around vertex Vj’ . The term Efi‘.’a defines the external energy.

As we elaborated earlier in this section, the term EI."’/.‘“‘“ is given by

R(V;) R ) R )
Eir?}Ode] — z 5[ (leef (le) _ f‘lMd] (le ))Z s (23)
=1

where f,> (V}) and £ (V) are, respectively, the components of the normalized
attribute vectors of the deformed model configuration and the model at vertex Vj’ . The
parameter 8, denotes the degree of importance of the /-th attribute element in the
surface segment under consideration. Notice that R(V j") is the number of the neigh-
borhood layers around vertex V/’ .

The data energy term, Efj.‘a , is usually designed to move the deformable model to-
wards an object boundary. Accordingly, for every vertex Vj’ , we require that in the
position of Vj’ , the magnitude of image gradient should be high, and the direction of

image gradient should be similar to the normal vector of the deformed surface. Since
our deformation mechanism, which is defined in section 2.4, deforms a surface seg-

ment around each vertex V]’ at a time, and not just the vertex itself, we want to design

an energy term that reflects the fit of the whole segment, rather than a single vertex,
with image edges. A surface segment is defined by vertex V/.i and its neighbors from

R(V) neighborhood layers, where R(V;) can vary throughout the deformation pro-
cedure, as detailed in Section 2.5. The /-th neighborhood layer has S, (I/'jf) vertices,
nbr,, V), where 0<m< S, (V}). The data energy term Efj.‘a is designed as follows.

RIV)) 85,07

Bl = 308, 3 (|, D) filobr, ) o, 0] 2

2.4 Local Deformation Mechanism

We now describe a greedy deformation algorithm for the minimization of the energy
function in equation (1). We suggest considering the deformation of a surface segment
as whole, which greatly helps the snake avoid local minima.
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Since we deform only one piece of the a model surface at a time, we can introduce
discontinuities at the boundary of the segment being deformed. In our 2D model [8],
we solved this issue by restricting the local affine transformation so that it leaves the
end-points of a deforming segment unchanged. However, for a surface model this is
not possible, because the vertices belonging to the R(V;)-th neighborhood layer do

not necessarily lie on the same plane. Therefore, we cannot necessarily find a local
affine transformation that preserves the position of the end-vertices of a deforming
segment. To remedy this situation, we used a different form of transformation for each
deforming surface segment, which is described next.

- , , ,

Fig. 3. Demonstration of the proposed deformation mechanism. See text for details.

Let Vj’ be the vertex whose neighborhoods form the surface segment to be de-
formed at a particular iteration (c.f. Fig 3). The R(V))-th neighborhood layer forms
the boundary of the surface segment. Consider a tentative position, ¥/ + AV, to which
V/’ is to move during the greedy algorithm. Then, the new position of each vertex,
nbr;,,(V}), in the segment is defined as nbr; (V) +AV -exp(~I*/267), where ¢ is a
parameter determining the locality of the transformation. We use values of o that

make eXp(—R(V,-i )? / 20%) close to zero, effectively leaving the bounding curve of a

deforming segment unchanged, and hence maintaining continuity. The new configura-
tion of the surface segment is then determined by finding A} that minimize the sum

data model
of two energy terms £ and £
Fig 3 demonstrates some tentative positions of vertex V/.i and the corresponding de-

formations of the surface segment. The gray surface in Fig 3, left, is a ventricular
model. The rest of the images show tentative deformations of the ventricular model
(white surfaces) overlaid on the undeformed model (gray surface).

2.5 Adaptive-Focus Deformation Strategy

Brain images contain several boundaries. Prior knowledge, in conjunction with the
quality of image information (e.g. edge strength), is used in AFDM to guide the de-
formation of the model in a hierarchical fashion. In particular, surfaces for which we
have relatively higher confidence are deformed first. As other surfaces follow this
deformation and get closer to their respective targets, they become more reliable fea-
tures for driving the model’s deformation. We demonstrate this scheme using the
example of the caudate nucleus (CN), the lenticular nucleus (LN) and the ventricular
boundaries. In Fig 4 we show cross-sections of the initial (automatic) placement of a
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3D model containing these 5 surfaces, and the deformation of that model after 10
iterations. The one in Fig 4b is the result of AFDM, with the ventricular boundaries
deforming first, and the CN and LN boundaries following. In fact, there was a con-
tinuous blending in the deformation of the CN and LN as iteration number increased.
The result of Fig 4c was obtained via the same model but with a non-adaptive defor-
mation mechanism, i.e. with forces applied to all components of the model simultane-
ously. In the adaptive focus scheme, the ventricles first pulled the LN close enough to
its corresponding boundary in the MR image, before the LN model started deforming.
In the non-adaptive scheme, however, the LN deformed towards the wrong boundary.

Fig. 4. Demonstration of the adaptive-focus deformation strategy. See text in Section 2.5.

In addition to its cross-component hierarchical formulation, our approach is also
hierarchical within components of the model. In particular, the parameter R(V;) that

determines the locality of the deformation transformation is typically chosen large in
the initial iterations, and is gradually reduced to 1. Therefore, initially, relatively more

vertices are involved in the surface segment around vertex Vj" , and the resulting trans-

formation is of relatively global form. In later stages, the transformation affects the
deformable model more locally.

3 Adaptive-Focus Deformable Statistical Shape Model (AFDSM)

In this section, we extend AFDM to incorporate information about the statistical
variation of the model. We first describe how we construct models of the training
samples using AFDM, while simultaneously establishing point-correspondences. We
then extend the statistical shape modeling paradigm of [3-5] to the adaptive focus
framework of AFDM. The resulting model is called Adaptive Focus Deformable Sta-
tistical shape Model (AFDSM).

3.1 Sample Construction

Statistical shape models have gained popularity in the medical image analysis com-
munity after they were first introduced in [3]. One of the difficulties, however, associ-
ated with these models is their training, which depends on defining point correspon-
dences in a training sample. This task is fairly straightforward in 2D. However, defi-
nition of point correspondences in 3D is a very difficult task. To overcome this diffi-
culty, some investigators have assumed that approximate correspondences can be
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defined by placing parametric grids on the structure of interest [4,9]. Although this is a
convenient way to define correspondences and train a statistical shape model, it is
based on only a rough approximation of point correspondences.

In our work we train the deformable model on samples whose point correspon-
dences are defined via AFDM. In particular, images of each training sample are first
hand-segmented on a section-by-section basis to the structures of interest (ventricles,
LN, CN, in this paper). AFDM is then applied to the segmented images, resulting in a
surface representation of each boundary. Notably, since AFDM is based on a similar-
ity between attribute vectors, it determines point-correspondences based on similarity
of the geometric structures of the boundaries of interest. We found that AFDM
worked very well on these hand-segmented images. In very few cases we had to
manually help the algorithm by “pulling” the surface to the boundary.

Fig 5 shows the deformation of the model (initially obtained from a single subject)
to a hand-segmented training sample. Cross-sections of the deformed model are shown
in black and are overlaid on (gray) sections of the target boundary. Three stages of the
process are shown: the initialization, an intermediate result obtained after the model
has focused primarily on the ventricles, and the final result.

3.2 Adaptive-Focus Statistical Information

In the previous statistical shape models [3-5], all landmarks in the training samples
was given equal weights when calculating shape statistical parameters. In this way,
larger features of a shape dominate over relatively smaller, yet important features,
merely because their large size influences the measures of shape variability. Further-
more, unreliable features, if they are large, dominate over relatively reliable and im-
portant features. To overcome this limitation, in our calculation of the statistical pa-
rameters, we weight different vertices of the model differently. In particular, vertices
belonging to relatively smaller structures are assigned relatively higher weights and
vice versa.

To better explain the importance of variable weighting, we will use the example of
a model containing a large structure (ventricles) and a smaller structure (LN). Due to
their large size and high variability, the ventricles dominantly affect the statistical
shape parameters. In particular, the dominant eigenvectors primarily reflect the vari-
ability of the ventricles. Accordingly, a deformation of the ventricles by image-derived
forces induces very little deformation on the LN. This is problematic, since the LN
should follow the deformation of the ventricles.

Our statistical model is analogous to the one in [3-5]. The variable weighting of the
components of the model effectively zooms each component to the same overall size
in the space where the statistics are calculated, so that each component is represented
in the most important eigenvectors of the corresponding covariance matrix. Each
component is then scaled back appropriately to its actual size. More details of the
algebraic manipulations involved in these transformations can be found in [8].
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4 Experiments and Conclusion

We test the performance of our algorithm in segmenting multiple structures of the
human brain with a multi-component model. Fig 1b shows a 5-component model
containing the boundaries of the ventricles and the left and right CN and LN. The total
number of vertices in this model is 3966. The surfaces of the ventricles, CN and LN
have 2399, 760, and 807 vertices, respectively. The total number of triangles in the
whole model is 7912. Using the technique in section 2.1, connections among proximal
vertices of different components were formed, as in Fig 1a.

As described in Section 3.1, AFDM was applied on hand-labeled images in order to
construct the training set. An example of this procedure is shown in Fig 5. The inter-
mediate result was obtained primarily by focusing on the ventricles, while the rest of
the components of the model were deformed via a global linear transformation fol-
lowing the ventricular deformation. Fig 6 shows one representative result that was
obtained via ADFSM.

We have presented a deformable model for segmenting objects from volumetric
MR images. Some extensions of our method are possible. Currently, the vertices are
arranged into tetrahedra that represent the 3D structure of objects. An alternative rep-
resentation could be a medial representation [10]. Combination of our geometric rep-
resentation with the medial representation should improve the results, since these two
methods have complementary merits and weaknesses. Moreover, the creation of our
model at multiple resolutions will definitely accelerate the speed of our algorithm.

We finally want to note that all of our experiments have been performed on MR
images of elderly individuals, which suffer from reduced white matter/grey matter
contrast, and from often extreme atrophy reflected, in part, by very large ventricles.
Despite the difficulties imposed by the nature of the data, we have obtained good and
robust results in a large set of brain images.
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Fig. 5. Deformation of the model to a hand-labeled target image of a training sample, for de-
termining point correspondences. See text in Section 3.1 for details.

Fig. 6. Example on segmenting multiple structures using AFDSM. (a) Initial position of the
model in the four slice images; (b) The final segmentation results corresponding to (a).
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