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Abstract. In this paper, we present the first phase of our effort to build a bone
density atlas. We adopted a tetrahedral mesh structure to represent anatomical
structures. We propose an efficient and automatic algorithm to construct the
tetrahedral mesh from contours in CT images corresponding to the outer bone
surfaces and boundaries between compact bone, spongy bone, and medullary
cavity. We approximate bone density variations by means of continuous density
functions in each tetrahedron of the mesh. Currently, our density functions are
second degree polynomial functions expressed in terms of barycentric
coordinates associated with each tetrahedron. We apply our density model to
efficiently generate Digitally Reconstructed Radiographs. These results are
immediately applicable as means of speeding up 2D-3D and 3D-3D intensity
based registration and will be incorporated into our future work on construction
of atlases and deformable intensity-based registration.

1. Introduction and Background

One of the most critical research problems in the analysis of 3D medical images is the
development of methods for storing, approximating and analyzing image data sets
efficiently. Many groups are developing electronic atlases for use as a reference
database for consulting and teaching, for deformable registration-assisted
segmentation of medical images and for use in surgical planning. Researchers at
INRIA have built atlases based on surface models and crest lines [1-3]. Cutting et al
[4] have built similar atlases of the skull. These atlases are surface models with some
landmarks and crest lines and don’t contain any volumetric density information. Chen
[5] and Guimond [6] have built an average brain atlas based on statistical data of the
voxel intensity values from a large group of MRI images. Their atlases only have
intensity information and don’t describe the structural information of the anatomy.
Pizer et al have proposed a medial model representation called M-rep to represent the
shapes of 3D medical objects [7, 8]. A CSG scheme allows M-reps to describe
complicate shapes. One advantage of this approach is that it is easy to deform medial
atoms to accommodate shape variations. One drawback is that the current
representational scheme is primarily useful for exterior shapes, and more work will be
needed to extend this work to volumetric properties.'

One goal of our current research is to construct a deformable density atlas for
bone anatomy and to apply the atlas to different applications. A related goal is to
provide an efficient representation for 2D-3D and 3D-3D intensity based registration.

" The authors have had very useful discussions with Dr. Pizer about the issues
involved, and are looking forward to exploring these issues with the UNC group.
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Our intent is to use intensity-based deformable registration methods both in the
construction of the atlas and in exploiting it for patient-specific procedure planning
and intraoperative guidance. It may be possible in many cases to dispense with patient
CT in favor of radiographs. The atlas will provide a basis for representing “generic”
information about surgical plans and procedures. The atlas will provide infrastructure
for study of anatomical variation. The techniques should be extendable to a wide
variety of bony anatomies. It may also provide an initial coordinate system for
correlating surgical actions with results, as well as an aid in postoperative assessment.

This atlas should include: 1) model representations of “normal” 3D CT densities
and segmented surface meshes; 2) 3D parameterization of surface shape & volumetric
properties; and 3) statistical characterization of variability of parameters.

We adopt a tetrahedral mesh model to represent volumetric properties for several
reasons. Tetrahedra provide great flexibility and other representations can be
converted into tetrahedral meshes relatively easily. Tetrahedra are easy to deform and
are easy to compute with. It is convenient to assign properties and functions to the
vertices and tetrahedra. Computational steps such as interpolation, integration, and
differentiation are fast and often can be done in closed form. Finite element analysis is
often conveniently performed on tetrahedral meshes.

This paper reports current progress in building suitable tetrahedral density models
from patient CT scans and illustrates the usefulness of this representation in
performing an important calculation in 2D-3D registration. In section 2, we elaborate
the method to construct the tetrahedral mesh from bone contours. We outline the key
steps of the method, including contour extraction, tetrahedron tiling, branching and
continuity preserving. In section 3, we present the method to compute and assign the
density function to the tetrahedron and evaluation the accuracy of the density
function. Then in section 4, we show the results using our density model to generate
Digitally Reconstructed Radiographs (DRRs). Finally section 5 discusses current
status and future work.

2. Construction of Tetrahedral Mesh Models from Contours

There are several techniques to construct the tetrahedral meshes. The easiest way first
divides the 3D space into cubicle voxels that can be easily divided into four tetrahedra
[9]. The drawback of this method is that the mesh generated is far too dense and
doesn’t capture any shape property of the model. A variation of this method first
merges similar voxels into larger cubes or uses oct-tree techniques to subdivide the
space, then performs the tetrahedronization. 3D Delaunay triangulation is another
method. But this method is time consuming and requires some post-processing since
the basic algorithm produces a mesh of the convex hull of the anatomical object.
Boissonnat et al [10] proposed a method to construct tetrahedral mesh from contours
on cross section. They computed 2D Delaunay triangulation on each section, then
tiled tetrahedral mesh between sections and removed external. They also solved
complex branching problem by contour splitting. But they didn’t consider the
intercrossing and continuity between tetrahedra, so their tetrahedral mesh may not be
valid for volumetric analysis.

Our tetrahedral mesh construction algorithm is derived from the surface mesh
reconstruction algorithm of Meyers, et al [11]. The tetrahedral mesh is constructed
slice by slice and layer by layer based on bone contours extracted in a separate
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algorithm. The algorithm is straightforward and fast. The running time is O(n), where
n is the total number of vertices in the model. We only sketch the algorithm here.
More details can be found in our research report [12].

Spongy

Compact

(a) Image Force (b) Bone Contours

Figure 1. Bone Structure Figure 2. Contour Extraction

2.1 Contour Extraction

Bones contain two basic types of osseous tissue: compact and spongy bone [13].
Compact bone is dense and looks smooth and homogeneous. Spongy bone is
composed of little beams and has a good deal of open space. The shaft of long bones
is constructed of a relatively thick collar of compact bone that surrounds a medullary
cavity. Short, irregular and flat bones share a simple design: they consist of thin plates
of compact bone on outside and spongy bone within. Figure 1 illustrates this structure.

We extract both the outer contour and the inner contour of the bone. If the shell
between contours is too thin, only outer contour is extracted”. In our algorithm, we
apply a deformable “snake” contour model to extract the bone contours [14]. The
forces that drive the deformable contour model can be expressed as: F' = Fjepma +
Finage + Fovternat, Where Fiyemar 1s the spline force of the contour. Fj.g. is the image
force generated from the iso-value. And Fpma 1S an external force to allow the
contour shrink or expand relative to the medial axis of the contour. Provided the
initial value of the contour, the algorithm can automatically converge to the contour of
the bone. The algorithm can also be applied repeatedly using the outer contour as the
initial value to find the inner contour. It should be mentioned that the users only need
to provide the initial contour for the first slice. For any following slice, the contour
generated on previous slice can be used as the initial value. So our method is highly
automatic. Figure 2a shows the image force used in our algorithm to extract the inner
and outer contour of the bone.

The tetrahedral model is a solid model. So after obtaining the contour of the
bone, we also compute the medial axis of the inner contour (or of the outer contour if
no inner contour has been extracted) and treat it as the innermost layer. Currently, we
use Lee’s method to extract the medial axis [15]. Hence we can tile the medial axis
and the bone contour to build a solid model.

The contours are fitted into B-spline curves and re-sampled at desired resolution
for the follow up tiling. During sampling, the segments with larger curvature are

% In the current implementation, this decision is made manually on a slice by slice
basis, but it will be easy to automate.
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sampled at higher resolution, while those with smaller curvature at lower resolution.
Figure 2b shows the contours and the medial axis extracted by our algorithm.

2.2 Data Structure of Tetrahedral Mesh

We chose a simple data structure to represent the tetrahedral mesh, consisting of a list
of vertex coordinates and a list of tetrahedra. Each tetrahedron contains links that
reference its four vertices and the four face neighbors. The face neighbors of a
tetrahedron are those tetrahedra share a common face with this tetrahedron. This data
structure is easy to maintain and update. Other information such as the density
function is also stored in the tetrahedron.

2.3 Tiling

Tiling is the essential step in building the tetrahedral mesh. The idea is to divide the
space between adjacent slices into tetrahedra by the aid of the bone contours, then
connect the tetrahedra into a mesh. The tiling operations are based on local
information, so the algorithms are fairly efficient even on large data set. The tiling can
be expressed as the traversal of four ordered contours on two adjacent slices (two on
each slice). At each step, one or two contours advance. Once the contours advance,
new tetrahedra are generated. The tiling continues until all contours are traversed.

2.3.1 Tiling Patterns: There are 32 distinct tiling patterns for each single step [12].
There are two categories of the tiling patterns: advance-one-contour and advance-two-
contours. Figure 3 shows two tiling pattern examples. In order to understand the tiling
pattern, we give some definitions. In Figure 3, the tiling happens between adjacent
slice N and slice N+1. The current vertices of the contours are called the front
vertices. The next vertices of the front vertices are called the candidate vertices for
next advance. In Figure 3a, al, bi, cl, dI are the front vertices and a2 b2 c2 d2 are
the candidate vertices of contour a b ¢ d respectively. The front faces are those
triangles composed by the front vertices. The front faces are the connections between
the tetrahedra generated in last tiling and those to be generated in current tiling. In
Figure 3a, triangle a/blcl and triangle hicldl are the front faces. The pivot vertices
are those vertices chose for current tiling. We can have one or two pivot vertices in
each tiling. The selection of pivot vertices determines the tiling pattern. In Figure 3a,
b2 and d?2 are the pivot vertices. And in Figure 3b, a2 is the pivot vertex. In general,
the pivot vertices and the front faces together decide the tiling pattern. In Figure 3a,
the tiling pattern produces three new tetrahedra. They are b2alblicl, b2bicldl and
b2cldid?2 (we denote the tetrahedron by its four vertices).

There are totally 32 tiling patterns according to the selection of pivot vertices and

4
the fact of the front faces. Among these, (ZJX2><2=24 cases are advance-two-

4
contours patterns and (1 )X 2 =8 cases are advance-one-contour patterns.

2.3.2 Metric Functions: As shown in last section, we have 32 tiling patterns. In order
to choose the best pattern for tiling, a metric function must be evaluated on each
candidate pattern. And we find out that most metric functions used in surface tiling
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are also good for tetrahedron tiling [11]. The metric function used in our algorithm is
a combination of minimizing span length, matching direction and matching
normalized arc length. Details of the metric functions are in our research report [12].
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Figure 4. Intercrossing

Figure 3. Tiling between slices
between tetrahedra

2.3.3 Constraints: The tiling problem seems very unconstrained due to the 32 tiling
patterns we mentioned in section 2.3.1. But in order to form a reasonable tetrahedral
mesh, some constraints must be imposed.
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Figure S. Continuity constraint between slices
Traversal sequence of section N is b2¢2a2d2, and
that of section N+1 is d2a2b2c2. (For clarity, all
internal crossing edge are omitted)

Figure 6. Continuity constraint between layers
Traval sequence of Shell M is b2c2a2d2, and that
of Shell M+1 is d2c2a2b2. (For clarity, all internal
crossing edge are omitted)

2.3.3.1 No Intercrossing between Tetrahedra: This constraint is obvious for a valid
subdivision of the volume. The case that causes intercrossing is shown on figure 4.
Figure 4.a shows a non-intercrossing case. But in Figure 4.b, line ae pierces triangle
bcd and causes the intercrossing of two tetrahedra abcd and abce. So when we select a
tiling pattern, those newly generated tetrahedra shouldn’t intercross with each other
and shouldn’t intercross with the old tetrahedra.
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2.3.3.2 Continuity Constraint between Slices: On a valid tetrahedral mesh, all
triangular faces except those on the boundary should have two neighbor tetrahedra.
Because we build the mesh slice by slice, the triangle faces between sections should
be shared by two sections and a continuity constraint should be imposed. To solve this
problem, we record the traversal sequence as an ordered array. Each time the tiling
procedure advances to new pivot vertices, the contour number of the pivot vertices
will be added to traversal sequence. So the traversal sequence records the tiling
procedure. For example in Figure 5, the traversal sequence of Section N in that
segment is bcad, which means the pivot vertices are in the order of b2c2ald?.
Furthermore we define the sub traversal sequence ab of the traversal sequence as a
subsequence which contains all and only the entries of a b in the entire traversal
sequence. For example, sub traversal sequence ab of the above traversal sequence is
ba. Similarly we can define the sub traversal sequence cd, ac, etc. And we can see that
the subsequence cd also records the tiling pattern of the triangle faces on slice N+1.
Because Section N+1 and Section N share slice N+1, the tiling pattern on slice N+1
should be preserved while tiling Section N+I. This means that the sub traversal
sequence cd of Section N should be identical to the sub traversal sequence ab of
Section N+1. Here we should notice that the contour ¢’ in Section N becomes the
contour a” in Section N+1, while contour d’ becomes contour b .

2.3.3.3 Continuity Constraint between Layers: Similar to the continuity constraint
between slices, the continuity constraint between layer should also be imposed during
the tiling procedure. We build the tetrahedral mesh layer by layer. We call the space
between layer M and layer M+1 Shell M. Shell M and Shell M+1 share layer M+1. So
the sub traversal sequence ac of Shell M should be identical to the sub traversal
sequence bd of Shell M+1. We also should notice that the contour a’ in Shell M
becomes the contour b in Shell M+1, while contour ¢’ becomes contour d”. Figure 6
illustrates the continuity constraint between layers.

2.4 Contour Correspondence between Slices

The corresponding problem arises whenever there are multiple contours (the outer
contours) on one slice. Currently in our problem, the bone model is usually simple
and doesn’t have a lot of branches. So the correspondence is not very complicate. We
solved the correspondence problem by simply examining the overlap and distance
between contours on adjacent slices.

2.5 Branching Problems: Problems associated with branching structures have been
studied intensively in surface mesh construction [11]. Some of the techniques are
suitable for tetrahedral mesh construction. There are two kinds of branching
problems: branching between layers and branching between slices.

2.5.1 Branching between Layers: The layer branching occurs when the numbers of
layers of corresponding contours between adjacent slices are different. The branching
between layers can be easily converted to the tiling of three contours (one on one
slice, two on the other slice), which is a special case of the tiling of four contours.
Branching between layers usually happens at the boundary between spongy bone (2
layers) and compact bone (3 layers).
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2.5.2 Branching between Slices: The branching between slices occurs when the
numbers of contours between adjacent slices are different. We adopt the methods used
in the surface mesh construction [11]. We construct a composite contour that connects
the adjacent contours at the closest points. (Figure7a). This composite contour is then
tiled with the single contour from the adjacent slice. In Figure 7, we show the case of
1:2 branching. This method can handle more general cases, i.e. the m.:n branching
cases. In the general case, the method can produce composite contours for both slices
and then conduct the standard tiling procedure.

2.6 Results

Figure 8 shows wire frame renderings of two tetrahedral mesh models produced by
our method. Figure 8.a is a femur model. Figure 8.b is a half pelvis model. Table 1
lists some facts about these two models.

Model Num of Num of Num of | Num of Voxels | Volume | Area (mm?)
Vertices Tetrahedra | Slices inside (mm”)

Femur 1400 7815 46 859503 144720 | 17593

Pelvis 3887 18066 89 873494 497664 | 83453

Table 1. Facts about two tetrahedral model

Connection  between
two contours

(a) Femur .'(-b) Pelvis

Figure 8. Tetrahedral Mesh Model
Figure 7. Branching between slices

3. Density Function

We assign an analytical density function to every tetrahedron instead of storing the
density value of every pixel in the model. The advantage of such a representation is
that it is in explicit form and is a continuous function in 3D space. So it is easy to
compute the integral, to differentiate, to interpolate, and to deform.

We build our density function in the barycentric coordinate base. The definition
of barycentric coordinate in a tetrahedron is as following. For any point K inside a
tetrahedron ABCD, there exists four masses wy, wg, wc, and wp such that, if placed at
the corresponding vertices of the tetrahedron, their center of gravity (barycenter) will
coincide with the point K. (w,, wp, we, wp) is called the barycentric coordinate of K.
Furthermore barycentric coordinates are in a form of homogeneous coordinates where
wytwptwetwp=1, and the barycentric coordinate is defined uniquely for every point.
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Currently we define the density function as a quadratic polynomial. For each
tetrahedron, we first get a sample of the pixels inside the tetrahedron, and obtain the
pixel density via the CT data set, then fit a polynomial function of the density in the
barycentric coordinates of those sampled pixels. After getting the density function, we
can compute the density of any point inside the tetrahedron by their barycentric
coordinate. In our initial experience quadratic polynomials have worked well,
although we are considering the use of higher order polynomials in barycentric
Bernstein form with adaptively simplified tetrahedral meshes.

In order to test the accuracy of the density function, we randomly chose sample
points {p;} inside the tetrahedron. The number of sample points of each tetrahedron
for testing is the same as the number used to generate the density function. Then we
compute the densities {c;} of {p;} by interpolation using CT data set and compute the
densities {d;} of {p;} using the density function of the tetrahedron. Table 2 lists the
comparison of {d;} and {c;}. We present the results in three bone categories: compact
bone, spongy bone and medullary cavity. We got the results from the femur density
model we built in last section. From the results we can learn that the density
distributions in compact bone and medullary cavity area are more homogeneous.

Avg Avg Density | Std Dev Avg Density | Max Density

Density Diff (lei-di) Diff Diff

Avg(c) Avg(lci-d) Avg(le-di/c) | Max(lci-dj)
Compact Bone 105.98 1.869 1.440 1.9% 4.803
Spongy Bone 77.9 2.309 2.046 2.4% 7.437
Medullary Cavity | 70.956 1.783 1.354 1.3% 4.325

Table 2. Accuracy of Density Function

The other advantage of our density model is its efficiency in storage. We store a
density function for each tetrahedron instead of storing the density value for every
voxel inside the tetrahedron. For quadratic polynomial in 3D space, we need 10
parameters to describe it. Table 3 gives the comparison of storage usage in tetrahedral
density model and regular CT image (here we only count those voxels inside the
tetrahedral mesh). From the table we can see that the larger the tetrahedron, the more
efficient in storage the density model can be. A hierarchical structure will further
improve the storage efficiency.

Num of | Avg Volume | Avg Num of | Storage per | Avg Storage
Tetra (mm?) voxels inside | tetra in CT image
(bytes) (bytes)
Compact Bone 5110 13.958 75.6 Min 72 151
Spongy Bone 2504 26.745 181.1 Max 84 362
Medullary Cavity | 164 34.228 200.4 Avg 75 401

Table 3. Storage of Tetrahedral Density Model

4. Computing DRRs from Tetrahedral Mesh Density Model

We can employ our tetrahedral mesh density model to support fast computation of
DRRs. When a ray passes through a 3D data set, it may go though hundreds of voxels
but only a few tetrahedra. Because the density function is in an explicit form, the
integral along a line can be computed in close form. Furthermore the neighborhood
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information is stored in the mesh, so it is fast to get the next tetrahedron hit by the ray
from current hitting tetrahedron. And it is also fast to find the entry point of the
casting ray from the neighborhood information. In contrast generating DRR from CT
data require computing partial voxel crossing, which is a time consuming operation.
So we have an efficient way to generate the DRR from our tetrahedral density model,
which is an important technique in 2D-3D intensity-based registration. The
computation can be even faster if we have a hierarchical model to represent different
level of details.

Running | Avg. elems Avg Avg Density Std Dev of
time Passed through | Density | Diff Density Diff
Avg(le-di/c) (le-di/c)
CT Data set 45s 65.6 voxels 142.5 4.9% 3.7%
Density Model | 14s 18.3 tetras 142.3

Table 4. Comparison of DRR using CT data set and Tetrahedral Density Model

Figure 9a is a DRR generated from a CT data using the ray casting algorithm.
Figure 9b is a DRR generated from our tetrahedral density model. The image size is
512*512. Table 4 shows the comparison of the two DRRs in Figure 9. We compare
the pixel values {c¢;} of the DRR generated from CT data and the pixel values {d;} of
the DRR generated from density model (We only compare those non-zero values).
We find out that the running time for an un-optimized implementation using density
model is only about 1/3 of the running time using CT data set. Figure 10 illustrates the
tetrahedra passed by a ray.

(a) DRR from CT (b) DRR from density model

Figure 10. Tetrahedra passed by a ray

Figure 9. DRR of femur

5. Discussions and Future Work

In this paper we have presented the first phase of our density atlas research. We
proposed a very efficient and automatic method to construct the tetrahedral mesh from
bone contours. We assigned a density function to the tetrahedron and showed that it is
reasonably accurate. We also presented the fast generation of DRRs from our density
mesh, which is an essential technique for 2D-3D intensity based registration and
volume visualization.

We will continue our work on building the density atlas. We are investigating the
technique to simplify the tetrahedral mesh based on face collapsing and build a
hierarchical data structure to represent multiple levels of details of the density model



540 Jianhua Yao and Russell Taylor

[9]. We will also investigate the deformation rule of the tetrahedral mesh and make
the density atlas deformable. We will build an average density model from a large
group of data by incorporating the statistical information in the model. And we will
apply finite element technique to study the biomedical and bio-mechanical properties
of the anatomy. Ultimately we will apply the density atlas to various application such
us 2D-3D registration, surgical planning etc.
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