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Abstract. Deformations that occur between pre-operative scans and
the intra-operative setup can render pre-operative plans inaccurate or
even unusable. It is therefore important to predict such deformations
and account for them in pre-operative planning. This paper examines
two different, yet related methodologies for this task, both of which col-
lect statistical information from a training set in order to construct a
predictive model. The first one examines the modes of co-variation be-
tween shape and deformation, and is therefore purely shape-based. The
second approach additionally incorporates knowledge about the biome-
chanical properties of anatomical structures in constructing a predictive
model. The two methods are tested on simulated training sets. Prelimi-
nary results show average errors of 9% (both methods) for a simulated
dataset that had a moderate statistical variation and 36% (first method)
and 23% (second method) for a dataset with a large statistical variation.
Use of the above methodologies will hopefully lead to better clinical out-
come by improving pre-operative plans.

Keywords: finite element modeling and simulation, registration tech-
niques, deformable mapping

1 Introduction

A fundamental problem encountered in several kinds of surgical procedures is
that pre-operative plans cannot be accurately executed, due to deformations that
occur between the pre-operative setup and the intra-operative environment. For
example, in prostate therapy, patients are often imaged in the subpine posi-
tion and operated on in the lithotomy position. Moreover, anatomical deforma-
tions can also be caused by the surgical instruments themselves. This problem
is very significant in robotically assisted percutaneous therapy involving needle
and catheter insertion, since a pre-operative plan based strictly on pre-operative
image coordinates cannot be accurately executed by a robotic system, unless
soft tissue deformation is predicted and/or tracked during the procedure.
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A number of investigators have used biomechanical models to predict intra-
operative deformations in particular with respect to the brain shift during image-
guided neurosurgery [1, 2, 3]. Nevertheless, there have been few attempts to use
statistical training sets in addition to the biomechanical models (c.f. [1]). In this
paper we present steps towards the development of a framework for predicting
soft tissue deformation, assuming that the deformation of interest is observed
in a training set, from which a predictive model is constructed. We investigate
two different, yet related frameworks. The first one is referred to as shape-based
estimation (SBE) and it extends ideas that have been used in statistical shape
models [4]. In particular, from the training set we find the principal modes of
co-variation between shape and deformation, by applying a principal component
analysis on vectors that hold jointly landmark coordinates and their respective
deformed coordinates vectors. When presented with a new shape, which corre-
sponds to the anatomy of the individual patient, we express it in terms of the
principal eigenvectors via an optimization procedure. We thus simultaneously
obtain the most likely deformation of the individual anatomy. Our goal here is
to find the component of the deformation that can be predicted from the pa-
tient’s shape, based on the premise that anatomy (e.g. bone, muscle, ligaments)
to some extent determines or constrains possible deformations.

The second approach that we examine is referred to as force-based estimation
(FBE). It is based on the premise that often there is additional knowledge about
the biomechanical properties of the deforming anatomy. Hence, this knowledge
should be utilized. Accordingly, we find the modes of co-variation between shape
and forces, rather than shape and deformation. (Forces are calculated from the
observed deformation and elastic properties; the latter can be optimized for best
prediction of deformation in the training set.) From the resulting forces, we then
find the deformation via the biomechanical model, using finite elements.

At this stage of our work, we have not worked on a particular application,
but rather we created simulated shapes and deformations, in order to test and
compare our methodologies. We plan to use this method for prostate therapy.

2 Methods

In this section we first describe how we created a training set by sampling prob-
ability distributions for the shape, elastic properties, and force parameters, and
feeding them to a finite element model. We then describe SBE and FBE. All of
our experiments are on 2D shapes. However, the principles are applicable to 3D.

Creating a statistical sample. In order to develop and test our methodol-
ogy, we created training sets using a biomechanical model. The training samples
were created by loading a plain-strain 2D shape with a uniform pressure at the
top and fixed boundary conditions at the bottom (see figure 1, left panel). The
shape is comprised of five ellipse-like areas. Each ellipse represents a different
anatomical region with possibly different elastic properties. The material behav-
ior is assumed to be linear elastic with a Poisson ratio of 0.48, which gives an
almost incompressible behavior typical of soft tissues. The Young’s moduli Ei
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(where i may refer to ellipse i) are within the range of the Young’s moduli of very
soft tissue (order of 10,000 N/m2). Linear elasticity is not necessary but is just
a convenient first approximation. ABAQUS/CAE [5] is used for the automatic
creation of the geometry, the application of elastic properties and boundary con-
ditions, meshing, and the solution of the resulting finite element model. Although
linear materials were used, large deformation mechanics rendered the problem
nonlinear. Gaussian distributions were sampled for all major parameters of the
simulated training samples: pressure at the top, major and minor diameters for
all ellipses, the Young’s moduli, and positions of the 3 small ellipses. We created
two sets of training samples, having relatively lower and relatively higher vari-
ation in parameters. The first training set included 20 samples and the second
one included 40 samples.

Extracting Statistical Parameters. Both of the methods that we ex-
amine in this paper, namely SBE and FBE, use principal component analysis,
although they apply it in a somewhat different way. Hence, we will describe the
basic principle of both methods first.

Assume that a collection of points, perhaps landmarks, defining a shape are
arranged in a vector s, and another collection of vectors are arranged in the
vector q. The vector q represents displacements in SBE and forces in FBE. In
the case of SBE the displacements correspond to all the points in s, while in the
case of FBE the forces correspond to points in s that are on the boundary of
the shape. Consider the vector x, created by concatenating s and q. We apply
principal component analysis in order to determine the modes of variation of x
from the training set, in a way similar to [4]. This procedure is summarized next:
– Align the training samples.
– Create the vector xi for each sample i out of n samples.
– Calculate the mean shape vector xmean and covariance matrix C and extract
its eigenvalues matrix Dfull (with the eigenvalues, λi, sorted by decreasing size)
and eigenvectors matrix Vfull (with eigenvectors vi being the columns of the
matrix).
– A new vector x can be created within this Statistical Shape Model:

x = xmean + Va (1)

where V is the part of Vfull that corresponds to m largest eigenvalues and a is
an m-dimensional coefficients vector (with elements ai). In this work we use
all the eigenvectors that have a non-zero eigenvalue.

Predicting q for a new shape. The procedure described above effectively
determines the modes of covariation between the shape vector, s, and the vector
to be predicted, q. When presented with a patient’s pre-operative images (tar-
get), we know the vector st (t stands for target), which represents the patient’s
undeformed anatomy. Our goal is then to predict the vector q, which will de-
termine the patient’s deformed anatomy. However, the eigenvectors in V have
dimensionality higher than that of st , and therefore since we don’t know q, we
cannot find a via projection on vi . Instead, we solve an optimization problem in
which the vector a is found so that it yields a shape that best fits st , while being
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most likely. The probability distribution of a is determined from the training
set.

Specifically, for a given target shape, st , we find the vector a that minimizes
the following objective function:

E(a) = ||s − st ||2 + µ

(
e0 .5

∑
m

1

a2
i

λi

)2

, (2)

where µ is a relative weighting factor and

s = T (xmean + Va) ,

with T (·) representing the operation of truncating the second half of a vector
(the components corresponding to q). The first term in (2) seeks vectors that
get as close as possible to the patient’s undeformed anatomy. The second term is
proportional to 1/Prob(a) and penalizes vectors a that are unlikely. The solution
is found using the Levenberg-Marquardt [6] (nonlinear) optimization scheme.
We start with a guess vector xguess based on eq. 1 and ai = k

√
λi, where k is

a constant e.g. 0.1. This procedure results in an estimate for the “missing part”
of x, namely q.

SBE and FBE. The predicted vector q is different in SBE and FBE meth-
ods. In particular, in SBE, we set q=displacements, thus predicting deformation
directly from the patient’s undeformed anatomy. This is accomplished by defin-
ing point-correspondences in the undeformed and deformed configurations of the
training samples.

In FBE, we set q=boundary forces. Since boundary force measurements are
not directly available, this method is less straightforward and is described in
more detail next. We start with some nominal elastic parameters, which in a
real case scenario would be initially taken from the literature or perhaps from
experimental data. From the displacement vectors that are available for each
training sample and from the nominal elastic parameters, we calculate a forces
vector f for each training sample, via a finite element solution. We then use these
forces in place of the vector q and calculate the statistics of x, as described
previously. In principle, we can iterate this procedure, by varying the elastic
parameters and each time evaluating the accuracy of the predictive model via
jack-knifing, an approach which we plan to use in future work.

Having established the predictive model, when presented with a new tar-
get (i.e. the pre-operative anatomy of the patient), we use the predictive model
to obtain force estimates. We do this by minimizing E(a), as described previ-
ously. We then feed these estimated forces into a finite element mesh created for
that patient and, by using the nominal elastic parameters (or those determined
from the training set, in future work) we calculate the displacement field, and
therefore the deformed (intra-operative) anatomy. Note that if no additional con-
straints are imposed, the problem is ill-posed, in that there are infinite number
of solutions differing by a rigid-body motion. Since rigid-body motion is not of
concern in our application, and in order to make the solution unique, we applied
3 additional displacement constraints on arbitrarily selected points.
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Fig. 1. Left: The model used in the phantom study. Uniform pressure is applied
at the top and fixed boundary conditions are applied at the bottom of the
large ellipse. Each ellipse may have its own elastic properties. Right: A sample
finite element mesh with approximately 1500 nodes and 3000 linear triangular
elements.

3 Results

Our first training set was comprised of 20 samples. The set was created by
varying the Young moduli etc. according to Gaussian distributions, as explained
in Methods. The standard deviation of each parameter was set equal to 1/20 of
the absolute of its mean. Four typical sample shapes from this sample set are
shown in figure 2, top left, showing the extent of variation in the samples.

In order to test our predictive model, we used jack-knifing. In particular,
we sequentially used 6 of the 20 training samples as test samples (targets),
and for each target the remaining 19 samples were used to build the predictive
model. The following estimates were used for the elastic properties for FBE:
E1 = E1mean ∗ 2, E2 = E2mean ∗ 0.5, E3 = E3mean ∗ 2, E4 = E4mean ∗ 0.5. By
E1mean etc. we denote the mean values used in the Gaussian distribution to
create the training dataset, and 1 denotes the 2 largest ellipse regions, while 2,
3, and 4 denote the small lower right, lower left, and upper left ellipse regions
respectively. By using material properties different than the true (mean) ones, we
wanted to test the robustness of our predictive model to non-perfect estimates
for the elastic parameters. Accordingly, we built 6 different predictive models,
from which we calculated an average prediction error for each target. A typical
example is shown in Fig. 2, which includes the results of both SBE and FBE.
Note that each shape consists of 5 ellipses. The target undeformed shape is
represented by a “.” and the target deformed shape by an “o”. The result of SBE
is represented by an “x” while the result of BFE by a “+”. In this example, both
methods achieved very good predictions, since the “+”, “x”, and “o” practically
coincide.
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In order to examine the performance of these methods under higher variabil-
ity in the sample set, we also created a second sample set with twice as high
standard deviation. Fig. 3 shows a typical result from that sample set, with the
same notation as in Fig. 2. Here, FBE outperformed SBE.

Tables 1 and 2 summarize the results for the first and second training datasets
respectively. The error measure was obtained by calculating the root mean square
error throughout all nodes on the boundaries of the five ellipses. The errors were
normalized against the root mean square of the displacement vector for the same
nodes.

Error in SBE Error in FBE

0.115256 0.054368
0.047286 0.066952
0.100564 0.153132
0.065547 0.056310
0.081303 0.070515
0.116419 0.153702

Table 1. Normalized errors obtained for various targets for the low variation
training dataset. The mean for SBE was 0.0877 and the mean for FBE was
0.0925.

Error in SBE Error in FBE

0.304303 0.053248
0.126730 0.073419
0.346008 0.566100
0.532299 0.387028
0.512355 0.048511

Table 2. Normalized errors for various targets for the high variation training
dataset. The mean for SBE was 0.3643 and the mean for FBE was 0.2257.

In order to examine the error introduced in FBE by the inherently approx-
imating nature of finite element modeling, we tested the behavior of the two
methods using a statistical sample set composed of 20 identical samples. SBE
gave an error of 0.0000, as expected, while FBE gave an error of 0.0032. We
conclude that the approximating nature of FEM is not a serious source of error
in the methodology.

Computational time requirements. The most CPU intensive operation
was the solution of the finite element problems. Each solution needed an average
of 2 minutes on a 225 MHz Octane SGI with 128 MB RAM. In contrast, a



640 Stelios K. Kyriacou, Dinggang Shen, and Christos Davatzikos

−0.06 −0.04 −0.02 0 0.02 0.04 0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

−0.06 −0.04 −0.02 0 0.02 0.04 0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

Fig. 2. Optimization results from a typical experiment in the low variation
training dataset. Top Panel Left: Four sample shapes, showing the extent of
variation in the samples. Solid and dotted lines depict the undeformed and de-
formed configuration respectively. Top Right: The initial undeformed shape used
to initialize the Levenberg-Marquardt method is represented by “*”, and this
target’s undeformed shape is represented by “.”. Bottom Panel: The target de-
formed shape predicted by the two methods. SBE: “+”. FBE: “x”. True target
deformed shape: “o”. True target undeformed shape: “.”.
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statistical solution was on the order of 10 seconds and an optimization solution
was on the order of 60 seconds. Note that FBE required the solution of a finite
element problem for each sample and the target so this method was slower than
SBE by an order of magnitude.

−0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

Fig. 3. Optimization results from a typical experiment in the high variation
training dataset. SBE: “+”. FBE: “x”. Target deformed shape: “o”. Target un-
deformed shape: “.”.

4 Discussion

We presented a methodological framework for predicting deformations, in part
using information obtained from a training set. We examined two methods. The
first method (SBE) is purely shape-based and it constructs a predictive model
based on the primary modes of covariation between anatomy and deformation.
That is, it finds the component of deformation that can be predicted purely from
knowledge of a patient’s anatomy. The second method (FBE) utilizes knowledge
about the biomechanical properties of the deforming anatomy, leaving the rest
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to a model analogous to the one used in SBE. Our preliminary results indicate
that FBE outperforms SBE when large variations in anatomy, forces, and elastic
parameters are present. However, both methods performed equally well under
relatively lower variability. This is expected, since large deformation mechanics
deviate from linearity, and therefore a linear statistical model should be expected
to be relatively less accurate in that scenario.

FBE has the advantage that it utilizes knowledge about the biomechanical
properties of anatomical structures. Moreover, it does not only estimate deforma-
tions on a discrete number of landmarks, but rather it determines a continuous
displacement field. Its main drawback is the additional computational complex-
ity, which in 3D is expected to be substantial.

Although it is clearly impossible to fully predict intra-operative deforma-
tions without additional intra-operative data, it is certainly beneficial to predict
as much as possible of the deformation, and to account for this deformation dur-
ing pre-operative planning. As pre-operative plans might need to be adjusted
and recomputed intra-operatively, starting from a good initial guess should sub-
stantially reduce optimal planning computational time.

Future work will include the extension of our work to 3D. Potential appli-
cations include modeling of prostate and spine deformation, predicting defor-
mations induced by needle insertion by using intra-operatively obtained force-
feedback measurements, and predicting prostate swelling in gene therapy.
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