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Abstract. 3D echocardiography is a recent cardiac imaging method ac-
tively developed for quantitative analysis of heart function. A major
barrier for its use as a quantitative tool in routine clinical practice is
the absence of accurate and robust segmentation and tracking methods
necessary to make the analysis fully automatic. In this article we present
a fully-automated 3D echocardiographic image processing protocol for
assessment of left ventricular (LV) function. We combine global image
information provided by a novel multi-scale fuzzy-clustering segmenta-
tion algorithm, with local boundaries obtained with phase-based acoustic
feature detection. We fit and track the LV surface using a 4D continuous
transformation. To our knowledge this is the first report of a completely
automated method. The protocol is viable for clinical practice. We ex-
hibit and compare qualitative and quantitative results on three 3D image
sequences that have been processed manually, in semi-automatic man-
ner, and in fully automated fashion. Volume curves are derived and the
ejection fractions errors with respect to manual segmentation are shown
to be below 5%.

1 Introduction

The last few years have seen the emergence of 3D echocardiography acquisition
systems in the market. Methods of acquisition are improving (in terms of spatial
and temporal resolution), moving now towards real-time volumetric acquisition.
However, interpretation and analysis of the data is more complex and time con-
suming than for conventional 2D echocardiography. As recent research studies
have shown [1,2,3], the use of three-dimensional data provides more precise in-
formation on the pathophysiology of the heart than conventional analysis of 2D
views ([4,5,6] and references therein), especially for volume and ejection fraction
calculation.

Previous work has shown the feasibility of reconstructing a three-dimensional
surface of the heart from sparse views [2]. However, in that work, the amount
of interaction required to obtain a reconstruction of the endocardium was very
large. In [1], a 3D finite element mesh of the left ventricular (LV) myocardium
is computed and used to perform strain analysis. The approach is interesting,
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Fig. 1. Diagram shows the process for automatic analysis of 3D echocardiography.

however the analysis depended on the high quality images acquired from open-
chest and is obviously not viable for routine protocol.

In this paper we present a framework for fully-automated 3D transthoracic
echocardiographic image analysis, viable for routine clinical practice. The image
data is acquired using a transthoracic 3D probe, the final result of the process-
ing is a segmented left ventricular cavity over the whole cardiac cycle. No user
interaction is necessary for this process. Previous work [3] from our laboratory
has shown that it is possible to perform automatic tracking of the LV cavity,
given a good segmentation of the image sequence and a correct initialisation for
the tracker. This paper addresses especially these two issues. First, we initialise
a 4D surface tracker [7] using a surface estimate of the LV cavity. The cavity
surface estimate is obtained automatically with a novel method for multi-scale
fuzzy-clustering based on combined ideas from [8,9]. We then use the tracker to
follow LV features detected with an acoustic-based edge detector for 2D cardiac
sequences [6]. In the following sections we present the details of the method, and
the experiments which have been conducted on three human healthy subjects.
Left ventricular cavity volume curves are computed and compared to those of a
manual segmentation performed by an expert.

2 Materials and Methods

The method consists of the following steps: first, feature points are extracted
from the image to get a precise localisation of the endocardial boundary. Sec-
ondly, an approximate LV cavity is estimated using an iterative process of
anisotropic diffusion and fuzzy clustering. Finally, a series of matching steps
are required to a) generate a model of the initial endocardial surface and b) map
this model through the cardiac sequence. Successful matching over the sequence
requires a good initialisation shape, which is provided by the first matching. The
procedure is schematised in Figure 1 and detailed in the following.

2.1 Image Acquisition
Digital 3D echocardiographic data was acquired on a HP SONOS 5500 ultra-
sound machine using a 3-5MHz rotating transducer, and stored as a sequence of
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2D echograms (2D+T image), one for each probe angle (see Figure 2 for exam-
ples of 2D+T images). For normal studies we used 12 coaxial planes, one every
15 degrees (see Figure 3(a)); for one “dense” dataset we acquired 60 slices, one
every 3 degrees. Data was acquired at a frame rate of 25 frames per second,
the pixel size being 0.5mm x 0.33mm. Scanning was performed using ECG and
respiration gating, on an apical view (i.e. the probe was located at the apex and
roughly aligned with the LV long axis).

2.2 Phase-Based Image Features Extraction

A phase-based spatio-temporal feature detection method is used to find candi-
date endocardial border points. An early implementation of the method used is
described in [6] and the performance of the technique is tested in detail on clinical
data in [10] within the context of 2D echocardiographic image tracking. Briefly,
the idea is to detect endocardial border points according to their phase signa-
ture (edge shape) rather than intensity gradient information. The reason for this
choice is that the acoustic reflection from the endocardial border varies according
to the relative angle between the boundary and the transducer. The net effect
is to produce a border with variable intensity contrast around its length. This
makes it difficult to detect the endocardial border using an intensity-gradient
based approach. This problem is even more of an issue in 3D echocardiogra-
phy, since some 2D acquisition planes might be non-optimal because they are
determined automatically once the first plane position has been chosen. In [6],
feature asymmetry is proposed as an alternative measure for endocardial border
detection and a spatio-temporal (2D+T) version of this idea is developed.

2.3 Scale-Space Clustering for LV Region Extraction

In order to have an automated surface fitter that reliably finds and tracks the
LV wall without human intervention we need boundary points to be present at
reasonable intervals all over the LV surface. Because ultrasound images have a
very low signal-to-noise ratio in regions of the LV wall parallel to the insoni-
fication beam, obtaining boundary points all over the endocardium is difficult
even with the phase-based method. However, this problem can be overcome if
the fitter is initialized with a surface that lies reasonably close from the target
LV surface.

In order to extract an estimate of the wall in every region of the LV cavity, we
use a multi-scale fuzzy clustering algorithm as a complementary segmentation
method. This algorithm does not rely exclusively on the local differential struc-
ture of the data but takes into account the global characteristics of the image.
In this way, a continuous approximation of the LV cavity boundary is provided
even in regions of the images with low contrast and low signal-to-noise ratio.
This also diminishes the effect of outliers detected by the phase-based method
that correspond to noise and other anatomical structures. The results of the
clustering method are then used to initialize the surface fitter in the manner
described in Section 2.4.
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Fuzzy Clustering We depart from Bezdek’s fuzzy c-means clustering algo-
rithm [11] which uses information about image attributes (like intensity) to
divide the image domain into a pre-determined number of regions (clusters)
and assigns every pixel in the image a degree of membership to the clusters,
i.e. a probability of belonging to each of the regions. The algorithm groups the
attributes by iteratively approaching a minimum of an energy function that mea-
sures the dissimilarity between the pixel attributes and those attributes of the
cluster centres of each region (the energy function is typically a distance in the
attributes’ vector space).

The image attributes we use are intensity and position in an elliptic-cylindrical
coordinate system, which is a natural choice for the 2D+T LV long-axis images
(in [8] we investigated a similar approach for 3D MR images, with an elliptic
coordinate system). The attributes are rescaled to homogenize their value ranges
in the attribute space.

The origin of the elliptic-cylindrical coordinate system is first placed in the
centre of the image (placing the left ventricle near the centre of the imaging
window is therefore an image acquisition requirement, although anyway this is
normally the case given that the left ventricle is the imaging subject), and then
the position is refined by computing the centre of mass of the LV cluster. The
cluster corresponding to the LV cavity is automatically identified as the one with
the lowest intensity and position. In case some pixels belonging to this cluster are
scattered around in the image (which rarely happens after the image has been
smoothed as described in the next section), the largest connected component is
computed to select only the points of the cluster belonging to the LV cavity.

None of the only two parameters to which clustering could be sensitive proved
to be crucial to get a correct estimation of the LV cavity. These two parameters
are, the number of clusters, and the geometry-intensity weight, which determines
how to weight the geometric position with respect to the image intensity in the
attributes space. For all the datasets (around 100 2D+T images corresponding
to 3 studies), using 6 clusters and a weight of 1 gave satisfactory results. Small
variations to these values only modify the quality of the segmentation results
(i.e. how close the cluster approximates the LV cavity, but they do not, for
instance, fuse the cavity and the background clusters). If precise identification
of the LV is required, these values can be useful to weight geometry v. intensity
in images with poor contrast or boundaries definition. However, a cluster that
approximates the LV cavity is sufficient for our protocol.

Anisotropic Diffusion for Scale-Space Generation In order to overcome
the problematic effect of intensity fluctuations of the noisy ultrasound images,
the clustering process is performed at different levels of resolution in a scale-
space of the image [12]. The scale-space is generated using the knowledge-based
anisotropic diffusion (KBAD) algorithm [9]. Anisotropic diffusion algorithms
smooth the image intensity (I) while preserving sharp edges by using the heat
diffusion equation ∂ I(x,y)

∂τ = ∇· ( c (x, y) ∇I(x, y) ) , where τ is the diffusion
time (related to the scale of resolution) and the conductance c is normally a
monotonically decreasing function of the magnitude of the intensity gradient
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(c = c(‖∇I‖)). In the KBAD scheme the conductance term is a tensor and an
explicit function of the the position p (in 2D+T in our image domain), the image
intensity and its gradient, i.e. C = C(p, I,∇I). It can therefore incorporate a
priori and a posteriori information of the geometric and dynamic characteristics
of the image. It can also be used to introduce a probabilistic measure of the
image intensity distribution [8,13], as explained in the next section.

Multi-scale Fuzzy-Clustering The KBAD scheme used for generating the
scale-space gets feedback from the clustering in progress. The fuzzy classifica-
tion of the image domain provides a measure of the a posteriori probability that
neighbouring pixels belong to the same tissue type, and is therefore incorporated
into the diffusion process by means of the conductance function, penalizing or
encouraging diffusion between pixels depending on the probability of them to
belong to the same cluster. A priori knowledge about the system is also intro-
duced by choosing the elliptic-cylindrical coordinate system for the clustering
attribute space.

The clustering is updated at regular intervals during the diffusion process
(i.e. at different levels of the scale-space), and the initially coarse segmentation
of the image is gradually improved until it converges to a meaningful region
partition, as the smoothing action of the diffusion process clears the image from
noise. The first clustering is done after some iterations of the diffusion, then
repeated at regular intervals. The computational expense of repeating the clus-
tering at different scales of resolution is not high because energy minimisation is
faster in the lower dynamic range of the smoothed image. Since the segmenta-
tion does not have to be precise, the process is performed on subsampled images
(reduced by a factor 8) making processing time shorter (a 2D+T image can, for
instance, be processed in under half a minute in a O2 SGI work station).

The combined diffusion-clustering algorithm penalizes inter-cluster diffusion
and encourages intra-cluster diffusion, resulting in homogeneous intensity clus-
ters with high contrast between them. The two driving mechanisms of the dif-
fusion process are, on the one hand, the gradient based function governed by
the differential structure of the image intensity function, and on the other hand,
the intensity and spatial based clustering through which knowledge has been
introduced by the elliptic-cylindrical symmetry of the image. Since the cluster-
ing scheme uses non-local information in order to perform the classification, the
diffusion process is enriched with information about the global characteristics of
the image.

2.4 Surface Fitting and Motion Tracking

The phase-based feature points obtained for each of the 2D+T images are recon-
structed in 3D (i.e. slices placed coaxially). The LV cluster is reconstructed in
3D in the same manner, and then used to create an ellipsoid of inertia by com-
puting the eigenvectors of its mass (points) distribution. The surface of the LV
cavity at end diastole is obtained in three steps: i) reconstruction of the ellipsoid
of inertia; ii) matching of this ellipsoid surface to the cluster points in order to
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get a first approximation of the shape of the cavity; and iii), matching of the
latter to the feature points detected with the feature asymmetry algorithm.

This LV cavity shape is then sequentially fitted to the feature points at
all time frames. A 3D matching is initialised with the result obtained at the
previous time frame. Each of these matching steps is processed using a vari-
ant of the method described in [7]: a surface S1 in an Image1 (either the el-
lipsoid, the manually segmented shape or the cluster shape) is deformed us-
ing B-spline tensor products to some feature points extracted from an Image2
(these being the boundary of the cluster or the points obtained as described
in the segmentation section). The geometric transformation f that maps the
points in Image1 to Image2 is such that the cost function defined by C(f) =∑

Mi∈S1
d[f (Mi)−CP2(f (Mi))]2 is minimized, where Mi is a feature point from

S1, and the function CP2 finds the closest feature point in Image2. d is a distance
measure between two points. Computations of the local B-spline transformation
is iterated until convergence is achieved. Details of the subset selection and min-
imisation process are outlined in [7]. As a final refinement, the control points
of the 3D B-spline tensor products that define the deformations at each time
frame are interpolated over time using a periodic temporal B-spline. The final
deformation of the surface over time is therefore a continuous 4D (3D+T) tensor
product of B-splines from which valuable dynamic information can be computed.

3 Results and Discussion

3.1 Phase-Based Feature Points Extraction

An example of feature detection on a slice at one time frame is shown in Fig-
ure 2(b), and a representation of the detected points over a spatio-temporal
sequence is shown in Figure 2(c). Points are generally well defined over most of
the endocardium, but a significant amount of spurious edges belonging to other
anatomical structures or produced by noise and image acquisition artifacts are
also detected and might perturb the motion tracking process. For instance, in
Figure 2(g) we can see some boundary outliers in an image with a strong intensity
inhomogeneity at the centre of the LV cavity (the inhomogeneity is due to a bad
gain setting during image acquisition). For these reasons a careful initialisation
of the surface fitting is essential to avoid tracking boundary outliers.

3.2 LV Cavity Cluster

The 2D+T sequence is partitioned into clusters, as shown in Figure 2(d). The
boundary of the central cluster (which corresponds to the LV cavity) is shown in
Figure 2(e) and (f). Only the end-diastolic cluster is used for initialisation, but
the clustering has been performed in 2D+T for more robustness. In Figure 2(h)
we can see the clustering results on the image with the inhomogeneity artifact
shown in Figure 2(g), and in Figure 2(i) we can see volume rendering results using
maximum intensity projection of the same LV cluster in 2D+T space. Notice
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 2. (a) Example of original 2D+T image (depth is time). Feature detection over-
laid on the original 2D+T image, at a particular time frame (b) and over the sequence
(c). (d) Clustering results (depth is time), showing the LV cavity cluster in yellow
(light grey). The boundary of the LV cluster is overlaid on the subsampled image at
a particular time frame (e) and over the sequence (f). (g) Example of low quality
ultrasound image with phase-based edges overlaid. (h) Clustering results of the same
image (showing that the LV cluster is a good approximation to the cavity), and (i)
volume rendering (maximum intensity projection) of the LV cluster in 2D+T space.

that the clustering algorithm works fine in spite of the intensity inhomogeneity
(because it uses geometric as well as intensity information).

Once the 2D+T clusters have been computed for all planes of the image
(all probe angles as shown in Figure 3(a)), the clusters are reconstructed in
3D (Figure 3(b) shows the boundaries of the reconstructed 3D cluster). The
ellipsoid of inertia is computed from these points. This computed ellipsoid is then
deformed onto the cluster points as shown in Figure 3(c). Finally, this deformed
shape is deformed again onto the feature asymmetry points (Figure 3(d)). This
last surface defines the shape of the LV cavity which is used for motion tracking.
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(a) (b) (c) (d)

Fig. 3. (a) A 3D dataset with 12 planes. (b) 3D reconstructed boundary of the LV
cavity cluster. (c) Cluster’s ellipsoid of inertia deformed onto the cluster. (d) Surface
from (c) deformed onto phase-based edges.

The reconstruction was robust on the three datasets processed. It provided a
good initialisation for the tracking in all cases: the maximum distance between
the surface and a manually segmented surface was around 8mm for all data.

3.3 Motion Tracking Using Dense vs. Sparse Data Acquisition

The effect of using sparse data on our protocol was investigated (previous results
from our laboratory [3] had indicated that volume estimation from sparse data
is feasible provided a good initialization for the tracker). We used the dense
dataset (see Section 2.1) and selected 60 (full resolution), 30, 12 or 6 of the
original planes. Tracking was performed using the automated method on each
of these 4 sets of planes, and LV volumes over the 3D sequence were computed.
The maximum volume variation between the sets at any given time was below
6% of the volume. In order to be consistent with the other acquisitions, all other
results using this dataset (patient (1)) were obtained using only 12 planes.

3.4 Comparing User Guided and Fully Automatic Processing

Four tracking processes are compared on each of the three datasets: a) Manual
segmentation performed by an expert for the complete 3D sequence; b) automatic
tracking using manual segmentation of the end-diastolic surface as initialisation;
c) automatic tracking using as an initial surface an ellipsoid manually placed by
an expert with the help of a 3D graphic interface; and d) the fully automatic
method, i.e. initialised using clustering as described in Sections 2.3 and 3.2.
Figure 4 shows the volume curves obtained with these four methods on the
three datasets. If the initialisation is not sufficiently close to the target LV cavity
(method (c)), the tracking fails and the volumes are meaningless. On the other
hand, the trackings (b) and (d) give similar results, showing that clustering
based automatic initialisation gives as good results as initialisation from manual
segmentation.

While initialising the tracker with a surface close to the actual LV reduces
errors due to the sparsity of the data (see [3]), our results show a systematic
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Fig. 4. The plots show volume curves for three different patients. In each of them,
the full line shows results of manual segmentation. Using the automatic tracking, three
initialisation shapes were used: a manual segmentation (dashed lines), a manually se-
lected ellipsoid (dotted lines), and the automatic cluster’s inertia-ellipsoid deformed to
the cluster (thick lines).

Fig. 5. The table shows the ejection fractions computed for the three patients using
all four reconstruction methods described in relation to Figure 4.

Ejection Fraction (%)

Method Patient (1) Patient (2) Patient (3)

Manual segmentation 51 45 54

Manual initialisation 46 43 52

Ellipsoid initialisation 38 37 46

Cluster initialisation 46 41 54

overestimation of the volume. The main reason is that endocardial boundaries
are not clearly defined in some regions of the lateral wall, often shadowed by
the rib cage. In these regions the tracker followed spurious edges located outside
the cavity. However, the computed ejection fractions are, in the case of the
fully automatic method, less than 5% over the value obtained from the manual
segmentation (see table in Figure 5).

4 Conclusions and Future Work

We demonstrated the feasibility of an automatic method to track endocardial
boundary from 3D transthoracic ultrasound data. We first use multi-scale clus-
tering to provide an approximate segmentation of the LV cavity. This estimated
shape is used to initialise the 3D fitter and tracker, which then follows the pre-
cise boundary candidates obtained with the phase-based method. Using local and
global information from the 3D image sequences, the combination of these three
techniques overcomes the problem of tracking sensitivity to the initial shape: we
obtained very similar tracking results using a manually defined surface and the
automatically defined one. Ejection fractions computed with the fully automatic
method were less than 5% over the value obtained using manual segmentation
by an expert. No user interaction is necessary for this process and the technique
is viable for routine clinical practice.
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In order to improve the LV surface tracking (and volume estimate) we are
currently developing a filter based on the clustering results, to remove outliers
from the endocardial boundary candidates. Also, normal vectors to the edges
provided by the feature detector are being used as additional information for
tracking. We have also investigated segmenting the reconstructed image in 3D
space (instead of 2D+T) using an elliptic coordinate system for clustering and
a 3D version of the feature detector. Results show that the method could also
be used on 3D images obtained with a different acquisition protocol (e.g. using
a real time 3D transducer-array).

Results from a clinical study comparing volumes obtained with our protocol
and those from SPECT Multi-gated Acquisition (MUGA) will be available by
the time of the meeting. This research is funded by grants from the EPSRC
(grant GR/L52444) and the MRC (grant G9802587).
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