Abstract
The susceptibility of iterated block ciphers to differential cryptanalysis is minimised by using S-box functions with low differential uniformity.
We extend the idea of differential uniformity to S-boxes with array inputs, giving a unified perspective from which to approach existence and construction problems for highly nonlinear functions. Properties of 2D differentially m-uniform functions are derived, two constructions are given and relationships with known 1D PN and APN functions are demonstrated.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. J. Cryptology 4, 3–72 (1991)
Canteaut, A.: Cryptographic functions and design criteria for block ciphers. In: Pandu Rangan, C., Ding, C. (eds.) INDOCRYPT 2001. LNCS, vol. 2247, pp. 1–16. Springer, Heidelberg (2001)
Canteaut, A., Videau, M.: Degree of composition of highly nonlinear functions and applications to higher order differential cryptanalysis. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, p. 518. Springer, Heidelberg (2002)
Chabaud, F., Vaudenay, S.: Links between linear and differential cryptanalysis. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 356–365. Springer, Heidelberg (1995)
Coulter, R.S., Henderson, M.: A class of functions and their application in constructing semi-biplanes and association schemes. Discrete Math. 202, 21–31 (1999)
Coulter, R.S., Matthews, R.W.: Planar functions and planes of Lenz-Barlotti Class II. Des., Codes and Cryptogr. 10, 167–184 (1997)
Daemen, J., Knudsen, L.R., Rijmen, V.: The block cipher Square. In: Biham, E. (ed.) FSE 1997. LNCS, vol. 1267, pp. 149–165. Springer, Heidelberg (1997)
Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption Standard. Springer, Heidelberg (2002)
Dobbertin, H.: Almost perfect nonlinear power functions on GF(2n): the Welch case. IEEE Trans. Inform. Theory 45, 1271–1275 (1999)
Hawkes, P., O’Connor, L.: XOR and non-XOR differential probabilities. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, p. 272. Springer, Heidelberg (1999)
Helleseth, T., Rong, C., Sandberg, D.: New families of almost perfect nonlinear power mappings. IEEE Trans. Inform. Theory 45, 475–485 (1999)
Horadam, K.J.: Differentially 2-uniform cocycles - the binary case, AAECC-15. In: Fossorier, M.P.C., Høholdt, T., Poli, A. (eds.) AAECC 2003. LNCS, vol. 2643, pp. 150–157. Springer, Heidelberg (2003)
Horadam, K.J., Udaya, P.: A new construction of central relative (p a ,p a ,p a , 1) difference sets. Des., Codes and Cryptogr. 27, 281–295 (2002)
Nyberg, K.: Perfect nonlinear S-boxes. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 378–386. Springer, Heidelberg (1991)
Nyberg, K.: Differentially uniform mappings for cryptography. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 55–64. Springer, Heidelberg (1994)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Horadam, K.J. (2003). Differential Uniformity for Arrays. In: Paterson, K.G. (eds) Cryptography and Coding. Cryptography and Coding 2003. Lecture Notes in Computer Science, vol 2898. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-40974-8_10
Download citation
DOI: https://doi.org/10.1007/978-3-540-40974-8_10
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-20663-7
Online ISBN: 978-3-540-40974-8
eBook Packages: Springer Book Archive