Abstract
Let \(\mathcal R_{t,n}\) denote the set of t-resilient Boolean functions of n variables. First, we prove that the covering radius of the binary Reed-Muller code RM(2,6) in the sets \(\mathcal R_{t,6}\), t=0,1,2 is 16. Second, we show that the covering radius of the binary Reed-Muller code RM(2,7) in the set \(\mathcal R_{3,7}\) is 32. We derive a new lower bound for the covering radius of the Reed-Muller code RM(2,n) in the set \(\mathcal R_{n-1,4}\). Finally, we present new lower bounds in the sets \(\mathcal R_{t,7}\), t=0,1,2.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Berlekamp, E., Welch, L.: Weight Distribution of the Cosets of the (32,6) Reed-Muller Code. IEEE IT 18, 203–207 (1972)
Carlet, C., Prouff, E.: On Plateaued Functions and their Constructions. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 57–78. Springer, Heidelberg (2003)
Courtois, N.: Higher Order Correlation Attacks, XL Algorithm and Cryptanalysis of Toyocrypt, ePrint Archive 2002/087 (2002)
Courtois, N., Meier, W.: Algebraic Attacks on Stream Ciphers with Linear Feedback. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 345–359. Springer, Heidelberg (2003)
Courtois, N.: Fast Algebraic Attacks on Stream Ciphers with Linear Feedback. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 176–194. Springer, Heidelberg (2003)
Courtois, N., Klimov, A., Patarin, J., Shamir, A.: Efficient Algorithms for Solving Overdefined Systems of Multivariate Polynomial Equations. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 392–407. Springer, Heidelberg (2000)
Hou, X.D.: GL(m, 2) Acting on R(r, m)/R(r— 1,m). Discrete Mathematics 149, 99–122 (1996)
Kurosawa, K., Iwata, T., Yoshiwara, T.: New Covering Radius of Reed-Muller Codes for i-Resilient Functions. In: Vaudenay, S., Youssef, A.M. (eds.) SAC 2001. LNCS, vol. 2259, pp. 75–86. Springer, Heidelberg (2001)
McLoughlin, A.: The Covering Radius of the (m— 3)—rd Order Reed-Muller Codes and a Lower Bound on the (m — 4)—th Order Reed-Muller Codes. SIAM J. Appl. Mathematics 37(2), 419–422 (1979)
MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-Holland Publishing Company, Amsterdam (1977)
Carlet, C., Sarkar, P.: Spectral Domain Analysis of Correlation Immune and Resilient Boolean Functions. Finite Fields and Applications 8(1), 120–130 (2002)
Sarkar, P., Maitra, S.: Nonlinearity Bounds and Constructions of Resilient Boolean Functions. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 515–532. Springer, Heidelberg (2000)
Schatz, J.: The Second Order Reed-Muller Code of Length 64 has Covering Radius 18. IEEE IT 27, 529–530 (1981)
Siegenthaler, T.: Correlation-Immunity of Non-linear Combining Functions for Cryptographic Applications. IEEE IT 30(5), 776–780 (1984)
Siegenthaler, T.: Decrypting a Class of Stream Ciphers Using Cyphertext Only. IEEE Trans. Comp. 34(1), 81–85 (1985)
Tarannikov, Y.: On Resilient Boolean Functions with Maximal Possible Nonlinearity. In: Roy, B., Okamoto, E. (eds.) INDOCRYPT 2000. LNCS, vol. 1977, pp. 19–30. Springer, Heidelberg (2000)
Guo-Zhen, X., Massey, J.: A Spectral Characterization of Correlation-Immune Combining Functions. IEEE IT 34(3), 569–571 (1988)
Zheng, Y., Zhang, X.M.: Plateaued Functions. In: Varadharajan, V., Mu, Y. (eds.) ICICS 1999. LNCS, vol. 1726, pp. 284–300. Springer, Heidelberg (1999)
Zheng, Y., Zhang, X.M.: Improved Upper Bound on the Nonlinearity of High Order Correlation Immune Functions. In: Stinson, D.R., Tavares, S. (eds.) SAC 2000. LNCS, vol. 2012, pp. 262–274. Springer, Heidelberg (2001)
Zheng, Y., Zhang, X.M.: New Results on Correlation Immunity. In: Won, D. (ed.) ICISC 2000. LNCS, vol. 2015, pp. 49–63. Springer, Heidelberg (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Borissov, Y., Braeken, A., Nikova, S., Preneel, B. (2003). On the Covering Radius of Second Order Binary Reed-Muller Code in the Set of Resilient Boolean Functions. In: Paterson, K.G. (eds) Cryptography and Coding. Cryptography and Coding 2003. Lecture Notes in Computer Science, vol 2898. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-40974-8_8
Download citation
DOI: https://doi.org/10.1007/978-3-540-40974-8_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-20663-7
Online ISBN: 978-3-540-40974-8
eBook Packages: Springer Book Archive