Skip to main content

Protein Structure Comparison: Algorithms and Applications

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 2666))

Abstract

A protein is a complex molecule for which a simple linear structure, given by the sequence of its aminoacids, determines a unique, often very beautiful, three dimensional shape. Such shape (3D structure) is perhaps the most important of all protein’s features, since it determines completely how the protein functions and interacts with other molecules. Most biological mechanisms at the protein level are based on shape-complementarity, so that proteins present particular concavities and convexities that allow them to bind to each other and form complex structures, such as skin, hair and tendon. For this reason, for instance, the drug design problem consists primarily in the discovery of ad hoc peptides whose 3D shape allows them to “dock” onto some specific proteins and enzymes, to inhibit or enhance their function.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Argos, P., Rossmann, M.: Exploring structural homology of proteins. J. Mol. Biol. 105, 75–95 (1976)

    Article  Google Scholar 

  2. Allen, F., et al.: Blue Gene: A vision for protein science using a petaflop supercomputer. IBM System Journal 40(2), 310–321 (2001)

    Article  Google Scholar 

  3. Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., Bourne, P.E.: The Protein Data Bank. Nucl. Ac. Res. 28, 235–242 (2000)

    Article  Google Scholar 

  4. Blundell, T.L.: Structure-based drug design. Nature 384, 23–26 (1996)

    Article  Google Scholar 

  5. Branden, C., Tooze, J.: Introduction to Protein Structure. Garland, New York (1999)

    Google Scholar 

  6. Bujnicki, J.M., Elofsson, A., Fischer, D., Rychlewski, L.: LiveBench-1: Continuous benchmarking of protein structure prediction servers. Prot. Sc. 10, 352–361 (2001)

    Article  Google Scholar 

  7. Burke, D.F., Deane, C.M., Blundell, T.L.: Browsing the SLoop database of structurally classified loops connecting elements of protein secondary structure. Bioinformatics 16(6), 513–519 (2000)

    Article  Google Scholar 

  8. Creighton, T.E.: Proteins: Structures and Molecular Properties. Freeman, New York (1993)

    Google Scholar 

  9. Cristobal, S., Zemla, A., Fischer, D., Rychlewski, L., Elofsson, A.: How can the accuracy of protein models be measured? (2000) (submitted)

    Google Scholar 

  10. Devillers, J. (ed.): Genetic Algorithms in Molecular Modeling. Academic Press, London (1996)

    Google Scholar 

  11. Donate, L.E., Rufino, S.D., Canard, L.H., Blundell, T.L.: Conformational analysis and clustering of short and medium size loops connecting regular secondary structures: a database for modeling and prediction. Protein Sci. 5(12), 2600–2616 (1996)

    Article  Google Scholar 

  12. Fischer, D., et al.: CAFASP-1: Critical Assessment of Fully Automated Structure Prediction Methods. Proteins Suppl. 3, 209–217 (1999)

    Article  Google Scholar 

  13. http://www.cs.bgu.ac.il/~dlfisher/CAFASP2

  14. Godzik, A.: The structural alignment between two proteins: Is there a unique answer? Prot. Sc. 5, 1325–1338 (1996)

    Article  Google Scholar 

  15. Godzik, A., Skolnick, J., Kolinski, A.: A topology fingerprint approach to inverse protein folding problem. J. Mol. Biol. 227, 227–238 (1992)

    Article  Google Scholar 

  16. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Reading (1989)

    MATH  Google Scholar 

  17. Goldman, D.: PhD Thesis, U.C. Berkeley (2000)

    Google Scholar 

  18. Goldman, D., Istrail, S., Papadimitriou, C.: Algorithmic Aspects of Protein Structure Similarity. In: Proc. of the 40th IEEE Symposium on Foundations of Computer Science, pp. 512–522 (1999)

    Google Scholar 

  19. Gough, J.G., Chothia, C., Karplus, C.K., Barrett, C., Hughey, R.: Optimal Hidden Markov Models for all sequences of known structure. In: Miyano, S., Shamir, R., Toshihisa, T. (eds.) Currents in Computational Molecular Biology. Univ. Acad. Press, Tokyo (2000)

    Google Scholar 

  20. Grötschel, M., Lovász, L., Schrijver, A.: The Ellipsoid Method and its Consequences in Combinatorial Optimization. Combinatorica 1, 169–197 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  21. Havel, T.F., Crippen, G.M., Kuntz, I.D.: Biopolymers, vol. 18, p. 73 (1979)

    Google Scholar 

  22. Havel, T.F., Kuntz, I.D., Crippen, G.M.: The theory and practice of distance geometry. Bull. Math. Biol. 45, 665–720 (1983)

    MATH  MathSciNet  Google Scholar 

  23. Hayward, R.B., Hoang, C., Maffray, F.: Optimizing Weakly Triangulated Graphs. Graphs and Combinatorics 5, 339–349 (1987)

    Article  MathSciNet  Google Scholar 

  24. Holland, J.H.: Adaptation in Natural and Artificial Systems. MIT Press, Cambridge (1992)

    Google Scholar 

  25. Holm, L., Sander, C.: Protein Structure Comparison by Alignment of Distance Matrices. J. Mol. Biol. 233, 123–138 (1993)

    Article  Google Scholar 

  26. Holm, L., Sander, C.: Mapping the protein universe. Science 273, 595–602 (1996)

    Article  Google Scholar 

  27. Khimasia, M., Coveney, P.: Protein Structure prediction as a hard optimization problem: the genetic algorithm approach (1997)

    Google Scholar 

  28. Lamdan, Y., Schwartz, J.T., Wolfson, H.J.: Object Recognition by Affine Invariant Matching. In: Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 335–344 (1988)

    Google Scholar 

  29. Lancia, G., Carr, R., Walenz, B., Istrail, S.: 101 Optimal PDB Structure Alignments: A Branch-and-Cut Algorithm for the Maximum Contact Map OverlapProblem. In: Proc. of the 5th ACM REsearch in COMputational Biology, pp. 193–202 (2001)

    Google Scholar 

  30. Lemmen, C., Lengauer, T.: Computational methods for the structural alignment of molecules. Journal of Computer–Aided Molecular Design 14, 215–232 (2000)

    Article  Google Scholar 

  31. Lesk, A.M.: Computational Molecular Biology. In: Kent, A., Williams, J., Hall, C.M., Kent, R. (eds.) Encyclopedia of Computer Science and Technology, vol. 31, pp. 101–165 (1994)

    Google Scholar 

  32. Levitt, M., Gerstein, M.: A Unified Statistical Framework for Sequence Comparison and Structure Comparison. Proc. Natl. Acad. Sc. 95, 5913–5920 (1998)

    Article  Google Scholar 

  33. Lifson, S., Sander, C.: Nature 282, 109 (1979)

    Google Scholar 

  34. Maggiora, G.M., Mao, B., Chou, K.C., Narasimhan, S.L.: Theoretical and Empirical Approaches to Protein–Structure Prediction and Analysis. Methods of Biochemical Analysis 35, 1–60 (1991)

    Article  Google Scholar 

  35. Marchler–Bauer, A., Bryant, S.H.: Comparison of Prediction Quality in the Three CASPS. Proteins Suppl. 3, 218–225 (1999)

    Article  MathSciNet  Google Scholar 

  36. McLaughlan: Acta Crystallogr (1979)

    Google Scholar 

  37. Mirny, L., Domany, E.: Protein fold recognition and dynamics in the space of contact maps. Proteins 26, 391–410 (1996)

    Article  Google Scholar 

  38. Mizuguchi, K., Deane, C.M., Blundell, T.L., Johnson, M.S., Overington, J.P.: JOY: protein sequence-structure representation and analysis. Bioinformatics 14, 617–623 (1998)

    Article  Google Scholar 

  39. Mizuguchi, K., Deane, C.M., Blundell, T.L., Overington, J.P.: HOMSTRAD: a database of protein structure alignments for homologous families. Protein Sci. 7(11), 2469–2471 (1998)

    Article  Google Scholar 

  40. Moult, J., Hubbard, T., Bryant, S., Fidelis, K., Pedersen, J., Predictors: Critical Assessment of Methods of Proteins Structure Prediction (CASP): Round II. Proteins Suppl. 1, dedicated issue (1997)

    Google Scholar 

  41. Moult, J., Hubbard, T., Fidelis, K., Pedersen, J.: Critical Assessment of Methods of Protein Structure Prediction (CASP): Round III. Proteins Suppl. 3, 2–6 (1999)

    Article  Google Scholar 

  42. Murzin, A.G., Brenner, S.E., Hubbard, T., Chothia, C.: SCOP: a structural classification of proteins database for the investigation of sequences and structures. J. Mol. Biol. 247, 536–540 (1995)

    Google Scholar 

  43. Nemhauser, G.L., Wolsey, L.: Integer and Combinatorial Optimization. John Wiley and Sons, Chichester (1988)

    MATH  Google Scholar 

  44. Overington, J.P., Johnson, M.S., Sali, A., Blundell, T.L.: Tertiary structural constraints on protein evolutionary diversity; Templates, key residues and structure prediction. Proc. Roy. Soc. Lond. B 241, 132–145 (1990)

    Article  Google Scholar 

  45. Park, K., Vendruscolo, M., Domany, E.: Toward an Energy Function for the Contact Map Representation of Proteins. PROTEINS: Structure, Function and Genetics 40, 237–248 (2000)

    Article  Google Scholar 

  46. Raghunathan, A.: Algorithms for Weakly Triangulated Graphs, U.C. Berkeley Tech. Rep., CSD-89-503 (1989)

    Google Scholar 

  47. Rhodes, G.: Crystallography Made Crystal Clear, 2nd edn. Academic Press, London (1999)

    Google Scholar 

  48. Russell, R.B., Barton, G.J.: Multiple protein sequence alignment from tertiary structure comparison. PROTEINS: Struct. Funct. Genet. 14, 309–323 (1992)

    Article  Google Scholar 

  49. Sali, A., Blundell, T.L.: Definition of general topological equivalence in protein structures. A procedure involving comparison of properties and relationshipsthrough simulated annealing and dynamic programming. J. Mol. Biol. 212(2), 403–428 (1990)

    Article  Google Scholar 

  50. Siew, N., Elofsson, A., Rychlewski, L., Fischer, D.: MaxSub: An Automated Measure for the Assessment of Protein Structure Prediction Quality. Bioinformatics 16, 776–785 (2000)

    Article  Google Scholar 

  51. Singh, A.P., Brutlag, D.L.: Protein Structure Alignment: A comparison of methods. Bioinformatics (2000) (submitted)

    Google Scholar 

  52. Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences. J. Mol. Biol. 147, 195–197 (1981)

    Article  Google Scholar 

  53. Sowdhamini, R., Burke, D.F., Huang, J.F., Mizuguchi, K., Nagarajaram, H.A., Srinivasan, N., Steward, R.E., Blundell, T.L.: CAMPASS: a database of structurally aligned protein superfamilies. Structure 6(9), 1087–1094 (1998)

    Article  Google Scholar 

  54. Sutcliffe, M.J., Haneef, I., Carney, D., Blundell, T.L.: Prot. Eng. 1, 377–384 (1987)

    Article  Google Scholar 

  55. Umeyama, S.: Least–Squares Estimation of Transformation Parameters Between Two Point Patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-13(4), 376–386 (1991)

    Article  Google Scholar 

  56. Vendruscolo, M., Kussell, E., Domany, E.: Recovery of protein structure from contact maps. Fold. Des. 2, 295–306 (1997)

    Article  Google Scholar 

  57. Vendruscolo, M., Najmanovic, R., Domany, E.: Protein Folding in Contact Map Space. Phys. Rev. Lett. 82(3), 656–659 (1999)

    Article  Google Scholar 

  58. Vendruscolo, M., Subramanian, B., Kanter, I., Domany, E., Lebowitz, J.: Statistical Properties of Contact Maps. Phys. Rev. E 59, 977–984 (1999)

    Article  Google Scholar 

  59. Zemla, A., Venclovas, C., Moult, J., Fidelis, K.: Processing and Analysis of CASP3 Protein Structure Predictions. Proteins Suppl. 3, 22–29 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lancia, G., Istrail, S. (2003). Protein Structure Comparison: Algorithms and Applications. In: Guerra, C., Istrail, S. (eds) Mathematical Methods for Protein Structure Analysis and Design. Lecture Notes in Computer Science(), vol 2666. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-44827-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-44827-3_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40104-9

  • Online ISBN: 978-3-540-44827-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics