Skip to main content

A Graph-based Clustering Approach to Evaluate Interestingness Measures: A Tool and a Comparative Study

  • Chapter
Quality Measures in Data Mining

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal, R., Imielinski, T., Swami, A.: Mining association rules between sets of items in large databases. Proceedings of the ACM-SIGMOD International Conference on Management of Data. Washington DC, USA (1993) 207-216

    Google Scholar 

  2. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. VLDB’94, Proceedings of the 20th International Conference on Very Large Data Bases. Santiago, Chile (1994) 487-499

    Google Scholar 

  3. Agrawal, R., Mannila, H., Srikant, R., Toivonen H., Verkano, A.I.: Fast discovery of association rules. Advances in Knowledge Discovery in Databases. (1996) 307-328

    Google Scholar 

  4. Azé, J., Kodratoff, Y.: A study of the Effect of Noisy Data in Rule Extraction Systems. EMCSR’02, Proceedings of the Sixteenth European Meeting on Cybernetics and Systems Research. (2002) 781-786

    Google Scholar 

  5. Bayardo, Jr.R.J., Agrawal, R.: Mining the most interesting rules. KDD’99, Proceedings of the Fifth ACM SIGKDD international conference on Knowledge discovery and data mining. San Diego, CA, USA (1999) 145-154

    Google Scholar 

  6. Blanchard, J., Guillet, F., Gras, R., and Briand, H.: Using information-theoretic measures to assess association rule interestingness. ICDM’05, Proceedings of the 5th IEEE Internationl Confereance on Data Mining, IEEE Computer Society Press, (2005) 66-73.

    Google Scholar 

  7. Blanchard, J., Guillet, F., Gras, R., Briand, H.: Assessing rule interestingness with a probabilistic measure of deviation from equilibrium. ASMDA’05, Proceedings of the 11th International Symposium on Applied Stochastic Models and Data Analysis. (2005) 191-200

    Google Scholar 

  8. Blanchard, J., Guillet, F., Gras, R., Briand, H.: Mesurer la qualité des règles et de leurs contraposées avec le taux informationnel TIC. EGC’04, Actes de 4èmes journées d’Extraction et de Gestion des Connaissances, RNTI-E-2, Vol. 1. Cépaduès Editions, Clermont Ferrand, France (2004) 287-298 (in French)

    Google Scholar 

  9. Blanchard, J., Kuntz, P., Guillet, F., Gras, R.: Implication Intensity: from the basic statistical definition to the entropic version. Statistical Data Mining and Knowledge Discovery, Chapter 28. Chapman & Hall, CRC Press (2003) 475-493

    Google Scholar 

  10. Freitas, A.A.: On rule interestingness measures. Knowledge-Based Systems, 12 (5-6). (1999) 309-315

    Article  Google Scholar 

  11. Gavrilov, M., Anguelov, D., Indyk, P., and Motwani, R.: Mining the stock market: which measure is best?. KDD’00, Proceedings of the sixth ACM SIGKDD international conference on Knowledge discovery and data mining . Boston, MA, USA (2000) 487-496.

    Google Scholar 

  12. Gras, R., Couturier, R., Blanchard, J., Briand, H., Kuntz, P., Peter, P.: Quelques critères pour une mesure de qualité de règles d’association. Mesures de Qualité pour la Fouille de Données, RNTI-E-1. Cépaduès Editions (2004) 3-31 (in French)

    Google Scholar 

  13. Gras, R.: L’implication statistique - Nouvelle méthode exploratoire de données. La Pensée Sauvage Édition (1996) (in French)

    Google Scholar 

  14. Hilderman, R.J., Hamilton, H.J.: Knowledge Discovery and Measures of Interestingness. Kluwer Academic Publishers (2001)

    Google Scholar 

  15. Klemettinen, M., Mannila, H., Ronkainen, P., Toivonen, H., and Verkano, A.I.: Finding interesting rules from larges sets of discovered association rules. ICIKM’94, Proceedings of the Third International Conference on Information and Knowledge Management. Ed. Nabil R. Adam, Bharat K. Bhargava and Yelena Yesha, Gaithersburg, Maryland. ACM Press, (1994) 401-407.

    Google Scholar 

  16. Huynh, X.-H., Guillet, F., Briand, H.: Clustering interestingness measures with positive correlation. ICEIS’05, Proceedings of the 7th International Conference on Enterprise Information Systems. (2005) 248-253

    Google Scholar 

  17. Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data: An Introduction to Cluster Analysis. Wiley, New York, (1990)

    Google Scholar 

  18. Kodratoff, Y.: Comparing Machine Learning and Knowledge Discovery in DataBases: An Application to Knowledge Discovery in Texts. Machine Learning and Its Applications, LNCS 2049. Springer-Verlag, (2001) 1-21

    Google Scholar 

  19. Kononenco, I.: On biases in estimating multi-valued attributes. IJCAI’95. (1995) 1034-1040

    Google Scholar 

  20. Lenca, P., Lallich, S., Vaillant, B.: On the robustness of association rules. Proceedings of the IEEE International Conference on Cybernetics and Intelligent Systems. (2006) 596-601

    Google Scholar 

  21. Liu, B., Hsu, W., Mun, L., Lee, H.: Finding interestingness patterns using user expectations. IEEE Transactions on Knowledge and Data Mining (11). (1999) 817-832

    Google Scholar 

  22. Loevinger, J.: A systematic approach to the construction and evaluation of tests of ability. Psychological Monographs. (1947)

    Google Scholar 

  23. Newman, D.J., Hettich,S., Blake, C.L., Merz, C.J.: [UCI] Repository of machine learning databases, http://www.ics.uci.edu/∼mlearn/MLRepository.html. University of California, Irvine, Department of Information and Computer Sciences, (1998).

  24. Padmanabhan, B., Tuzhilin, A. : A belief-driven method for discovering unexpected patterns. KDD’98, Proceedings of the Fourth International Conference on Knowledge Discovery and Data Mining. (1998) 94-100

    Google Scholar 

  25. Piatetsky-Shapiro, G.: Discovery, analysis and presentation of strong rules. Knowledge Discovery in Databases, G. Piatetsky-Shapiro and W. Frawley editors. MIT Press, Cambridge, MA (1991) 229-248

    Google Scholar 

  26. Piatetsky-Shapiro, G., Steingold, S.: Measuring Lift Quality in Database Marketing. SIGKDD Explorations 2(2). (2000) 76-80

    Article  Google Scholar 

  27. Ross, S.M.: Introduction to probability and statistics for engineers and scientists. Wiley, (1987)

    Google Scholar 

  28. Sebag, M., Schoenauer, M.: Generation of rules with certainty and confidence factors from incomplete and incoherent learning bases. EKAW’88, Proceedings of the European Knowledge Acquisition Workshop. Gesellschaft fr Mathematik und Datenverarbeitung mbH (1988) 28.1-28.20

    Google Scholar 

  29. Silberschatz, A., Tuzhilin, A.: What makes patterns interesting in knowledge discovery systems. IEEE Transactions on Knowledge Data Engineering 8(6). (1996) 970-974

    Article  Google Scholar 

  30. Tan, P.N., Kumar, V., Srivastava, J.: Selecting the right objective measure for association analysis. Information Systems 29(4). (2004) 293-313

    Article  Google Scholar 

  31. Vaillant, B., Lenca, P., Lallich, S.: A clustering of interestingness measures. DS’04, the 7th International Conference on Discovery Science LNAI 3245. (2004) 290-297

    Google Scholar 

  32. Vaillant, B., Lallich, S., Lenca, P.: Modeling of the counter-examples and association rules interestingness measures behavior. The 2006 International Conference on Data Mining. (2006)

    Google Scholar 

  33. Zhao, Y., Karypis, G.: Criterion functions for document clustering: experiments and analysis. Technical Report TR01-40, Deparment of Computer Science, University of Minnesota. (2001) 1-30

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Huynh, XH., Guillet, F., Blanchard, J., Kuntz, P., Briand, H., Gras, R. (2007). A Graph-based Clustering Approach to Evaluate Interestingness Measures: A Tool and a Comparative Study. In: Guillet, F.J., Hamilton, H.J. (eds) Quality Measures in Data Mining. Studies in Computational Intelligence, vol 43. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-44918-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-44918-8_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44911-9

  • Online ISBN: 978-3-540-44918-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics