Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
References
Jorge A. Hierarchical clustering for thematic browsing and summarization of large sets of association rules. In Proceedings of the 2004 SIAM International Conference on Data Mining, 2004.
Kosters W. A., Marchiori E., and Oerlemans A. J. Mining clusters with association rules. In Proceedings of Third Symposium on Intelligent Data Analysis (IDA 99), volume 1642 of LNCS, pages 39-50. Springer-Verlag, 1999.
Baesens B., Viaene S., and Vanthienen J. Post-processing of association rules. In Proceedings of the Workshop on Post-Processing in Machine Learning and Data Mining: Interpretation, Visualization, Integration, and Related Topics within The Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Boston, MA, USA, 2000. ACM SIGKDD.
Lent B., Swami A., and Widom J. Clustering association rules. In Proceedings of the Thirteenth International Conference on Data Engineering, pages 220-231, April 1997.
Liu B., Hu M., and Hsu W. Multi-level organization and summarization of the discovered rules. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2000), pages 208-217, Boston, USA, 2000. ACM SIGKDD, ACM Press.
Padmanabhan B. and Tuzhilin A. Unexpectedness as a measure of interestingness in knowledge discovery. Decision Support Systems, 27(3):303-318, 1999.
Aggarwal C. C., Procopiuc C., and Yu P. S. Finding localized associations in market basket data. IEEE Transactions on Knowledge and Data Engineering, 14 (1):51-62, 2002.
Adomavicius G. and Tuzhilin A. Expert-driven validation of rule-based user models in personalization applications. Data Mining and Knowledge Discovery, 5(1-2):33-58, 2001.
Dong G. and Li J. Interestingness of discovered association rules in terms of neighborhood-based unexpectedness. In Proceedings of the Second Pacific-Asia Conference on Knowledge Discovery and Data Mining, pages 72-86. SpringerVerlag, 1998.
Toivonen H., Klemettinen M., Ronkainen P., Hatonen K., and Mannila H. Pruning and grouping discovered association rules. In Proceedings of the MLnet Workshop on Statistics, Machine Learning and Knowledge Discovery in Databases, Herakhion, Crete, Greece, 1995.
Bayardo Jr. R. J., Agrawal R., and Gunopulos D. Constraint-based rule mining in large, dense databases. Data Mining and Knowledge Discovery, 4(2-3):217-240,2000.
Grabmeier J. and Rudolph A. Techniques of cluster algorithms in data mining. Data Mining and Knowledge Discovery, 6:303-360, 2002.
Miller R. J. and Yang Y. Association rules over interval data. In Proceedings of the ACM SIGMOD Conference on Management of Data, pages 452-461. ACM SIGMOD, ACM Press, 1997.
Gupta G. K., Strehl A., and Ghosh J. Distance based clustering of association rules. In Proceedings of Intelligent Engineering Systems through Artificial Neural Networks: ANNIE (1999), volume 9, pages 759-764, 1999.
Jain A. K., Murty M. N., and Flynn P. J. Data clustering: A review. ACM Computing Surveys, 31(3):264-323, 1999.
Wang K., Tay S. H. W., and Liu B. Interestingness-based interval merger for numeric association rules. In Proceedings of the International Conference on Data Mining and Knowledge Discovery, pages 121-128, New York City, August 1998. AAAI.
Kaufman L. and Rousseeuw P. J. Finding Groups in Data: An Introduction to Cluster Analysis. Wiley, 1990.
Anderberg M. R. Cluster Analysis for Applications. Academic Press, 1973.
Sahar S. Exploring interestingness through clustering: A framework. In Proceedings of the IEEE International Conference on Data Mining (ICDM 2002), pages 677-680. IEEE, IEEE Computer Society Press, 2002.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Natarajan, R., Shekar, B. (2007). Understandability of Association Rules: A Heuristic Measure to Enhance Rule Quality. In: Guillet, F.J., Hamilton, H.J. (eds) Quality Measures in Data Mining. Studies in Computational Intelligence, vol 43. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-44918-8_8
Download citation
DOI: https://doi.org/10.1007/978-3-540-44918-8_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-44911-9
Online ISBN: 978-3-540-44918-8
eBook Packages: EngineeringEngineering (R0)