Skip to main content

Constraint-Based Motion Planning Using Voronoi Diagrams

  • Chapter
Algorithmic Foundations of Robotics V

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 7))

Abstract

We present a novel algorithm for planning the motion of rigid and articulated robots in complex, dynamic, 3D environments. Our approach is to reformulate the motion planning problem as a simulation of a constrained dynamical system, and guide this system using generalized Voronoi diagrams (GVDs). In our framework, each rigid robot is subject to virtual forces induced by geometric and mechanical constraints. These may include constraints to have a robot follow an estimated path computed using a GVD, constraints to link rigid objects together to represent an articulated robot, or constraints to enforce a spatial relationship between multiple collaborative robots. The resulting algorithm uses all constraint forces to move the robot along an estimated path through the environment, while avoiding collisions with obstacles and enforcing joint and positional constraints. Our algorithm works well in dynamic environments with moving obstacles and is applicable to planning scenarios where multiple robots must move simultaneously to achieve a collision free path.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Amato, O. Bayazit, L. Dale, C. Jones, and D. Vallejo. Obprm: An obstacle-based prm for 3d workspaces. Proceedings of WAFR98, pages 197–204, 1998.

    Google Scholar 

  2. O. B. Bayazit, J.M. Lien, and N. M. Amato. Probabilistic roadmap motion planning for deformable objects. Proceedings of International Conference on Robotics and Automation, pages 2126–2133, 2002.

    Google Scholar 

  3. W. Bouma, X. Chen, I. Fudos, C. Hoffmann, and P. Vermeer. An Electronic Primer on Geometric Constraint Solving. http://www.cs.purdue.edu/homes/cmh/electrobook/intro.html/homes/cmh/electrobook/intro.html, 1990.

    Google Scholar 

  4. B. Bruderlin and D. Roller (eds). Geometric Constraint Solving and Applications. Spring Verlag, 1998.

    Google Scholar 

  5. J. F. Canny and B. Donald. Simplified voronoi diagrams. Discrete and Computational Geometry, 3: 219–236, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  6. J.F. Canny. The Complexity of Robot Motion Planning. ACM Doctoral Dissertation Award. MIT Press, 1988.

    Google Scholar 

  7. H. Chang and T. Li. Assembly maintainability study with motion planning. In Proceedings of International Conference on Robotics and Automation, 1995.

    Google Scholar 

  8. H. Choset and J. Burdick. Sensor based planning, part ii: Incremental construction of the generalized voronoi graph. IEEE Conference on Robotics and Automation, 1995.

    Google Scholar 

  9. H. Choset and J. Burdick. Sensor based planning: The hierarchical generalized voronoi graph. Workshop on Algorithmic Foundations of Robotics, 1996.

    Google Scholar 

  10. M. Foskey, M. Garber, M. Lin, and D. Manocha. A voronoi-based hybrid planner. Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2001.

    Google Scholar 

  11. S. Gottschalk, M. Lin, and D. Manocha. OBB-Tree: A hierarchical structure for rapid interference detection. In Proc. of ACM Siggraph’96, pages 171–180, 1996.

    Google Scholar 

  12. K. Hoff, T. Culver, J. Keyser, M. Lin, and D. Manocha. Fast computation of generalized voronoi diagrams using graphics hardware. Proceedings of ACM SIGGRAPH 1999, pages 277–286, 1999.

    Google Scholar 

  13. K. Hoff, T. Culver, J. Keyser, M. Lin, and D. Manocha. Interactive motion planning using hardware accelerated computation of generalized voronoi diagrams. IEEE Conference on Robotics and Automation, pages pp. 2931–2937, 2000.

    Google Scholar 

  14. L. Kavraki and J. C. Latombe. Randomized preprocessing of configuration space for fast path planning. IEEE Conference on Robotics and Automation, pages 2138–2145, 1994.

    Google Scholar 

  15. L. Kavraki, P. Svestka, J. C. Latombe, and M. Overmars. Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans. Robot Automat., pages 12 (4): 566–580, 1996.

    Article  Google Scholar 

  16. O. Khatib. Real-time obstable avoidance for manipulators and mobile robots. IJRR, 5 (l): 90–98, 1986.

    MathSciNet  Google Scholar 

  17. G. Kramer. Solving Geometric Constraint Systems: A case study in kinematics. MIT Press, 1992.

    Google Scholar 

  18. E. Larsen, S. Gottschalk, M. Lin, and D. Manocha. Distance queries with rectangular swept sphere volumes. Proc. of IEEE Int. Conference on Robotics and Automation, 2000.

    Google Scholar 

  19. J.C. Latombe. Robot Motion Planning. Kluwer Academic Publishers, 1991.

    Google Scholar 

  20. T. Lozano-Perez and R. Wilson. Assembly sequencing for arbitrary motions. Proc. IEEE International Conference on Robotics and Automation, 1993.

    Google Scholar 

  21. K. Ahrentsen N. Jacobsen, R. Larsen, and L. Overgaard. Automatic robotweld-ing in complex shipstructures. J. Applied Artificial Intelligence, 1997.

    Google Scholar 

  22. C. Ö’Dünlaing, Micha Sharir, and C. K. Yap. Retraction: A new approach to motion-planning. In Proc. 15th Annu. ACM Sympos. Theory Comput., pages 207–220, 1983.

    Google Scholar 

  23. J. M. Ortega and W. C. Rheinboldt. Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, 1970.

    Google Scholar 

  24. L Overgaard, H. Petersen, and J. Perram. A general algorithm for dynamic control of multilink robots. Int. J. Robotics Research, 14 (3), 1995.

    Google Scholar 

  25. C. Pisula, K. Hoff, M. Lin, and D. Manocha. Randomized path planning for a rigid body based on hardware accelerated voronoi sampling. In Proc. of 4th International Workshop on Algorithmic Foundations of Robotics, 2000.

    Google Scholar 

  26. Steven A. Wilmarth, Nancy M. Amato, and Peter F. Stiller. Maprm: A probabilistic roadmap planner with sampling on the medial axis of the free space. IEEE Conference on Robotics and Automation, 1999.

    Google Scholar 

  27. A. Witkin and D. Baraff. Physically Based Modeling: Principles and Practice. ACM Press, 1997. Course Notes of ACM SIGGRAPH.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Garber, M., Lin, M.C. (2004). Constraint-Based Motion Planning Using Voronoi Diagrams. In: Boissonnat, JD., Burdick, J., Goldberg, K., Hutchinson, S. (eds) Algorithmic Foundations of Robotics V. Springer Tracts in Advanced Robotics, vol 7. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45058-0_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45058-0_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07341-0

  • Online ISBN: 978-3-540-45058-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics