Abstract
Qualitative probabilistic networks are designed for probabilistic inference in a qualitative way. They capture qualitative influences between variables, but do not provide for indicating the strengths of these influences. As a result, trade-offs between conflicting influences remain unresolved upon inference. In this paper, we investigate the use of order-of-magnitude kappa values to capture strengths of influences in a qualitative network. We detail the use of these kappas upon inference, thereby providing for trade-off resolution.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Wellman, M.P.: Fundamental concepts of qualitative probabilistic networks. Artificial Intelligence 44, 257–303 (1990)
Spohn, W.: A general non-probabilistic theory of inductive reasoning. In: Shachter, R.D., Levitt, T.S., Kanal, L.N., Lemmer, J.F. (eds.) Uncertainty in Artificial Intelligence 4, pp. 149–158. Elsevier Science Publishers, Amsterdam (1990)
Spohn, W.: Ordinal conditional functions: a dynamic theory of epistemic states. In: Harper, W.L., Skyrms, B. (eds.) Causation in Decision, Belief Change, and Statistics, pp. 105–134. Reidel, Dordrecht (1988)
Darwiche, A.: A Symbolic Generalization of Probability Theory. Ph.D. dissertation, Computer Science Department, Stanford University, Palo Alto (1992)
Darwiche, A., Goldszmidt, M.: On the relation between kappa calculus and probabilistic reasoning. In: Lopez de Mantaras, R., Poole, D. (eds.) Proceedings of the 10th Conference on Uncertainty in Artificial Intelligence, pp. 145–153. Morgan Kaufmann Publishers, San Francisco (1994)
Druzdzel, M.J., Henrion, M.: Efficient reasoning in qualitative probabilistic networks. In: Proceedings of the 11th National Conference on Artificial Intelligence, pp. 548–553. AAAI Press, Menlo Park (1993)
Renooij, S., van der Gaag, L.C.: From qualitative to quantitative probabilistic networks. In: Darwiche, A., Friedman, N. (eds.) Proceedings of the 18th Conference on Uncertainty in Artificial Intelligence, pp. 422–429. Morgan Kaufmann Publishers, San Francisco (2002)
Renooij, S., van der Gaag, L.C.: Enhancing QPNs for trade-off resolution. In: Laskey, K.B., Prade, H. (eds.) Proceedings of the 15th Conference on Uncertainty in Artificial Intelligence, pp. 559–566. Morgan Kaufmann Publishers, San Francisco (1999)
Parsons, S.: Qualitative Methods for Reasoning under Uncertainty. MIT Press, Cambridge (2001)
Renooij, S., van der Gaag, L.C., Parsons, S., Green, S.: Pivotal pruning of trade-offs in QPNs. In: Proceedings of the 16th Conference on Uncertainty in Artificial Intelligence, pp. 515–522. Morgan Kaufmann Publishers, San Francisco (2000)
Henrion, M., Provan, G., Del Favero, B., Sanders, G.: An experimental comparison of numerical and qualitative probabilistic reasoning. In: Lopez de Mantaras, R., Poole, D. (eds.) Proceedings of the 10th Conference on Uncertainty in Artificial Intelligence, pp. 319–326. Morgan Kaufmann Publishers, San Francisco (1994)
Goldszmidt, M., Pearl, J.: Reasoning with qualitative probabilities can be tractable. In: Dubois, D., Wellman, M.P., D’Ambrosio, B., Smets, P. (eds.) Proceedings of the 8th Conference on Uncertainty in Artificial Intelligence, pp. 112–120. Morgan Kaufmann Publishers, San Francisco (1992)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Renooij, S., Parsons, S., Pardieck, P. (2003). Using Kappas as Indicators of Strength in Qualitative Probabilistic Networks. In: Nielsen, T.D., Zhang, N.L. (eds) Symbolic and Quantitative Approaches to Reasoning with Uncertainty. ECSQARU 2003. Lecture Notes in Computer Science(), vol 2711. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45062-7_7
Download citation
DOI: https://doi.org/10.1007/978-3-540-45062-7_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-40494-1
Online ISBN: 978-3-540-45062-7
eBook Packages: Springer Book Archive