Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2683))

Abstract

Common techniques for curve alignment find a solution in the form of a shortest network path by means of dynamic programming. In this paper we present an approach that employs Sethian’s Fast Marching Method to find the solution with sub-resolution accuracy and in consistence with the underlying continuous problem. We demonstrate how the method may be applied to compare closed curves, morph one curve into another, and compute curve averages. Our method is based on a local curve dissimilarity function F(t,s) that compares the two input curves \(\mathcal{C}_{1}(t)\) and \(\mathcal{C}_{2}(s)\) at given points t and s. In our experiments, we compare dissimilarity functions based on local curvature information and on shape contexts. We have tested the algorithm on a database of 110 sample curves by performing “best matches” experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ayache, N., Faugeras, O.: HYPER: A new approach for recognition and positioning of two-dimensional objects. IEEE Trans. on PAMI 8(1), 44–54 (1986)

    Google Scholar 

  2. Belongie, S., Malik, J., Puzicha, J.: Shape Context: A New Descriptor for Shape Matching and Object Recognition. In: NIPS, vol. 13, pp. 831–837 (2001)

    Google Scholar 

  3. Basri, R., Costa, L., Geiger, D., Jacobs, D.W.: Determining the Similarity of Deformable Shapes. Vision Research 38, 2365–2385 (1998)

    Article  Google Scholar 

  4. Cohen, I., Ayachi, N., Sulger, P.: Tracking points on deformable objects using curvature information. In: Sandini, G. (ed.) ECCV 1992. LNCS, vol. 588, pp. 458–466. Springer, Heidelberg (1992)

    Google Scholar 

  5. Cohen, L.D., Kimmel, R.: Global minimum for active contour models: a minimal path approach. IJCV 24(1), 57–78 (1997)

    Article  Google Scholar 

  6. Hildreth, E.: The Measurement of Visual Motion. MIT Press, Cambridge (1983)

    Google Scholar 

  7. Kimmel, R., Sethian, J.A.: Fast Marching Methods for Robotic Navigation with Constraints. Univ. of California, Berkeley (1996)

    Google Scholar 

  8. Kimmel, R., Sethian, J.A.: Optimal algorithm for shape from shading and path planning. Journal of Mathematical Imaging and Vision 14(2), 237–244 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  9. Maes, M.: On a cyclic string-to-string correction problem. Information Processing Letters 35, 73–78 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  10. Pentland, A., Sclaroff, S.: Closed-Form Solutions for Physically Based Shape Modeling and Recognition. IEEE Trans. on PAMI 13(7), 715–729 (1991)

    Google Scholar 

  11. Pope, A., Lowe, D.: Learning Object Recognition Models from Images. In: ICCV, pp. 296–301 (1993)

    Google Scholar 

  12. Sebastian, T., Klein, P., Kimia, B.: On aligning curves. IEEE Trans. on PAMI 25(1), 116–124 (2003)

    Google Scholar 

  13. Serra, B., Berthod, M.: Optimal subpixel matching of contour chains and segments. In: IJCV, pp. 402–407 (1995)

    Google Scholar 

  14. Sethian, J.: Level Set Methods: Evolving Interfaces in Geometry, Fluid Mechanics, Computer Vision and Materials Sciences. Cambridge Univ. Press, Cambridge (1996)

    Google Scholar 

  15. Sethian, J.A.: A fast marching level set method for monotonically advancing fronts. Proc. Nat. Acad. Sci. 93(4), 1591–1595 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  16. Tagare, H.D.: Shape-based nonrigid correspondence with application to heart motion analysis. IEEE Trans. Medical Imaging 18(7), 570–578 (1999)

    Article  Google Scholar 

  17. Tappert, C.: Cursive script recognition by elastic matching. IBM Journal of Research Development 26(6), 765–771 (1982)

    Article  Google Scholar 

  18. Wagner, R., Fischer, M.: The string-to-string correction problem. Journal of the Association for Computing Machinery 21, 168–173 (1974)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Frenkel, M., Basri, R. (2003). Curve Matching Using the Fast Marching Method. In: Rangarajan, A., Figueiredo, M., Zerubia, J. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2003. Lecture Notes in Computer Science, vol 2683. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45063-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45063-4_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40498-9

  • Online ISBN: 978-3-540-45063-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics