Skip to main content

Contextual and Non-combinatorial Approach to Feature Extraction

  • Conference paper
Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2683))

Abstract

Extracting features from an image is the first step in many computer vision applications. Traditionally, features represent physical or visual primitives such as edges and corners. In this paper, we augment the definition to include any attributes that conveniently describe the correlation and contextual relation between the primitive and its neighbors. The augmentation allows us to design a more detailed probability distribution model. If the distribution model is differentiable with respect to each attribute of a feature, a simple local search will find a feature set that is a local maximum in the joint probability distribution. Therefore, the final representation is free from noise and aliasing that perturbs the representation away from the local maximum. We can apply the approach to many low level vision tasks. In this paper, we demonstrate our approach with sub-pixel contour representation and surface reconstruction problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aramini, M.: Efficient image magnification by bicubic spline interpolation, http://members.bellatlantic.net/vze2vrva/design.html

  2. Baker, S., Kanade, T.: Limits on super-resolution and how to break them. PAMI 24(9), 1167–1183 (2002)

    Google Scholar 

  3. Ballard, D.H.: Generalizing the hough transform to detect arbitrary shapes. PR 13(2), 111–122 (1981)

    MATH  Google Scholar 

  4. Besag, J.: On the statistical analysis of dirty pictures. J. Royal Statistical Soc., Ser. B 48, 259–302 (1986)

    MathSciNet  MATH  Google Scholar 

  5. Bishop, C., Blake, A., Marthi, B.: Super-resolution enhancement of video. In: Proc. Artificial Intelligence and Statistics, Key West, Florida (2003) (to appear)

    Google Scholar 

  6. Black, M.J., Sapiro, G., Marimont, D., Heeger, D.: Robust anisotropic diffusion. IP 7(3), 421–432 (1998)

    Google Scholar 

  7. Blake, A., Zisserman, A.: Visual Reconstruction. MIT Press, Cambridge (1987)

    Google Scholar 

  8. Canny, J.F.: A computational approach to edge-detection. PAMI 8, 679–700 (1986)

    Google Scholar 

  9. Davies, R.H., Twining, C.J., Cootes, T.F., Waterton, J.C., Taylor, C.J.: A minimum description length approach to statistical shape modeling. MedImg 21(5), 525–537 (2002)

    Google Scholar 

  10. Elad, M., Feuer, A.: Super-resolution reconstruction of image sequences. PAMI 21(9), 817 (1999)

    Google Scholar 

  11. Faugeras, O.D., Keriven, R.: Variational-principles, surface evolution, pdes, level set methods, and the stereo problem. IP 7(3), 336–344 (1998)

    MathSciNet  MATH  Google Scholar 

  12. Geiger, D., Girosi, F.: Parallel and deterministic algorithms from MRF’s: Surface reconstruction. PAMI 13(5), 401–412 (1991)

    Google Scholar 

  13. Geman, S., Geman, D.: Stochastic relaxation, Gibbs distribution, and the Bayesian restoration of images. PAMI 6(6), 721–741 (1984)

    MATH  Google Scholar 

  14. Hansen, M.W., Higgins, W.E.: Relaxation methods for supervised image segmentation. PAMI 19(9), 949–962 (1997)

    Google Scholar 

  15. Hueckel, M.: A local visual operator which recognizes edges and lines. JACM 20(4), 634–647 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hummel, R.A., Zucker, S.W.: On the foundations of relaxation labeling processes. PAMI 5(3), 267–287 (1983)

    MATH  Google Scholar 

  17. Jain, A.K., Farrokhnia, F.: Unsupervised texture segmentation using Gabor filters. PR 24(12), 1167–1186 (1991)

    Google Scholar 

  18. Kass, M., Witkin, A.P., Terzopoulos, D.: Snakes: Active contour models. IJCV 1(4), 321–331 (1988)

    Article  Google Scholar 

  19. Kimia, B.B., Tannenbaum, A.R., Zucker, S.W.: Shapes, shocks, and deformations i: The components of 2-dimensional shape and the reaction-diffusion space. IJCV 15(3), 189–224 (1995)

    Article  Google Scholar 

  20. Kittler, J.V., Illingworth, J.: Relaxation labelling algorithms – a review. IVC 3, 206–216 (1985)

    Google Scholar 

  21. Kubota, T.: Robust feature extraction: A new framework for visual information processing. Technical Report CSCE TR-2002-015, Department of Computer Science and Engineering, University of South Carolina (2002)

    Google Scholar 

  22. Lowe, D.G.: Perceptual organization and visual recognition. Kluwer Academic Publisher, Hingham (1985); 02043

    Google Scholar 

  23. Mumford, D., Shah, J.: Boundary detection by minimizing functionals. In: CVPR 1985, San Francisco, CA, pp. 22–26 (1985)

    Google Scholar 

  24. Nguyen, N., Milanfar, P., Golub, G.: A computationally efficient superresolution image reconstruction algorithm. IP 10(4), 573–583 (2001)

    MathSciNet  MATH  Google Scholar 

  25. Papachristou, P., Petrou, M., Kittler, J.V.: Edge postprocessing using probabilistic relaxation. SMC-B 30(3), 383–402 (2000)

    Google Scholar 

  26. Freeman, W.T., Haddon, J.A., Pasztor, E.C.: Example-based super-resolution. IEEE Computer Graphics and Applications 22(2), 56–65 (2002)

    Article  Google Scholar 

  27. Rosenfeld, A., Hummel, R.A., Zucker, S.W.: Scene labeling by relaxation operations. SMC 6(6), 420–433 (1976)

    MathSciNet  MATH  Google Scholar 

  28. Sarkar, S., Boyer, K.L.: Perceptual organization in computer vision: A review and a proposal for a classificatory structure. SMC 23(2), 382–399 (1993)

    Google Scholar 

  29. Schultz, R.R., Stevenson, R.L.: A bayesian approach to image expansion for improved definition. IP 3(3), 233–242 (1994)

    Google Scholar 

  30. Sethian, J.A.: Level Set Methods: evolving interfaces in geometry, fluid dynamics, computer vision, and material science. Cambridge University Press, New York (1996)

    Google Scholar 

  31. Shan, Y., Boon, G.W.: Sub-pixel location of edges with non-uniform blurring: a finite closed-form approach. IVC 18(13), 1015–1023 (2000)

    Google Scholar 

  32. Smith, S.M., Brady, J.M.: Susan: A new approach to low-level image processing. IJCV 23(1), 45–78 (1997)

    Article  Google Scholar 

  33. Wilson, R.C., Hancock, E.R.: Structural matching by discrete relaxation. PAMI 19(6), 634–648 (1997)

    Google Scholar 

  34. Worthington, P.L., Hancock, E.R.: Needle map recovery using robust regularizers. IVC 17(8), 545–557 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kubota, T. (2003). Contextual and Non-combinatorial Approach to Feature Extraction. In: Rangarajan, A., Figueiredo, M., Zerubia, J. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2003. Lecture Notes in Computer Science, vol 2683. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45063-4_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45063-4_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40498-9

  • Online ISBN: 978-3-540-45063-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics