Model Checking Multi-Agent
Programs with CASP

Rafael H. Bordini', Michael Fisher!, Carmen Pardavila®,
Willem Visser?, and Michael Wooldridge!

! Department of Computer Science, University of Liverpool, Liverpool L69 7ZF, U.K.
{R.Bordini, M.Fisher, C.Pardavila, M.J.Wooldridge}@csc.liv.ac.uk
2 RIACS/NASA Ames Research Center, Moffett Field, CA 94035, U.S.A.

wvisser@email.arc.nasa.gov

1 Introduction

In order to provide generic development tools for rational agents, a number
of agent programming languages are now being developed, often by extending
conventional programming languages with capabilities from the BDI (Belief-
Desire-Intention) theory of rational agency [7l9]. Such languages provide high-
level abstractions that aid the construction of dynamic, autonomous components,
together with the deliberation that goes on within them. One particularly in-
fluential example of such a language is AgentSpeak(L) [0], a logic programming
language with abstractions provided for key aspects of rational agency, such as
beliefs, goals and plans.

Model checking techniques have only recently begun to find a significant
audience in the multi-agent systems community. In particular, our approach is
the first whereby model checking can be applied to a logic programming language
aimed at reactive planning systems following the BDI architecture.

Our aim in this paper is to describe a toolkit we have developed to support the
use of model checking techniques for AgentSpeak(L). The toolkit, called CASP
(Checking AgentSpeak Programs), automatically translates AgentSpeak(L) code
into the input language of existing model checkers. In [I], we showed how to
translate from AgentSpeak(L) to PROMELA, the model specification language
for the SPIN LTL model checker [5]. More recently [2], we developed an alterna-
tive approach, based on the translation of AgentSpeak(L) agents into Java and
verification via JPF2, a general purpose Java model checker [§].

2 AgentSpeak(L)

The AgentSpeak(L) programming language was introduced in [6]. It is a natural
extension of logic programming for the BDI agent architecture, and provides an
elegant abstract framework for programming BDI agents. The BDI architecture
is, in turn, the predominant approach to implementing “intelligent” or “rational”
agents [9]. An AgentSpeak(L) agent is created by the specification of a set of
base beliefs and a set of plans. A belief atom is simply a first-order predicate in

W.A. Hunt, Jr. and F. Somenzi (Eds.): CAV 2003, LNCS 2725, pp. 110-[[I3] 2003.
© Springer-Verlag Berlin Heidelberg 2003

Model Checking Multi-Agent Programs with CASP 111

the usual notation, and belief atoms or their negations are termed belief literals.
An initial set of beliefs is just a collection of ground belief atoms.

AgentSpeak(L) distinguishes two types of goals: achievement goals and test
goals. Achievement and test goals are predicates (as for beliefs) prefixed with
operators ‘!” and ‘?’ respectively. Achievement goals state that the agent wants
to achieve a state of the world where the associated predicate is true. (In practice,
these initiate the execution of subplans.) A test goal returns a unification for
the associated predicate with one of the agent’s beliefs; they fail otherwise. A
triggering event defines which events may initiate the execution of a plan. An
event can be internal, when a subgoal needs to be achieved, or external, when
generated from belief updates as a result of perceiving the environment. There
are two types of triggering events: those related to the addition (‘+’) and deletion
(‘=7) of mental attitudes (beliefs or goals).

Plans refer to the basic actions that an agent is able to perform on its envi-
ronment. Such actions are also defined as first-order predicates, but with special

predicate symbols used to distinguish them. If e is a triggering event, by, ..., by,
are belief literals, and hq, ..., h, are goals or actions, then “e¢ : by & ... & b,
<= hi; ...; hyp.”isa plan. A plan is formed by a triggering event (denoting the

purpose for that plan), followed by a conjunction of belief literals representing a
context (they are separated by ‘:’). The context must be a logical consequence
of that agent’s current beliefs for the plan to be applicable. The remainder of the
plan (after ‘<-’) is a sequence of basic actions or (sub)goals that the agent has
to achieve (or test) when the plan, if applicable, is chosen for execution.
Figure [I] shows some example AgentSpeak(L)

+concert (A,V) : likes(A) plans. They tell us that, when a concert is
<~ 1book_tickets (A,V). announced for artist A at venue V (so that,
from perception of the environment, a belief

+1book_tickets(A,V) concert (A,V) is added), then if this agent in fact
not (busy (phone)) likes artist A, then it will have the new goal of

<= call(V); ...; booking tickets for that concert. The second plan
!choose_seats(A,V). | tells us that whenever this agent adopts the goal

of booking tickets for A’s performance at V, if it

Fig. 1. Examples of Plans is the case that the telephone is not busy, then it

can execute a plan consisting of performing the

basic action call(V) (assuming that making a phone call is an atomic action

that the agent can perform) followed by a certain protocol for booking tickets

(indicated by ‘..."), which in this case ends with the execution of a plan for
choosing the seats for such performance at that particular venue.

3 Property Specification Language

In the context of verifying multi-agent systems implemented in AgentSpeak(L),
the most appropriate way of specifying the properties that the system satisfies
(or does not satisfy) is expressing those properties within BDI logics [79]. In
our framework, we can express simple BDI logical properties that can be subse-

112 Rafael H. Bordini et al.

quently translated into Linear Temporal Logic (LTL) formule (as used by SPIN
and JPF2) with associated predicates over AgentSpeak(L) data structures.
Our property specification language includes the standard BDI modal op-
erators Bel (Belief), Des (Desire), and Int (Intention); however, these can only
be applied to AgentSpeak(L) atomic formulae. The language also includes a
modality used to refer to an agent performing an action in the environment
(called Does). For example, for an agent i as in Figure [one can express
properties such as O((Des i book_tickets(al,v1)) = (Bel i 1ikes(al))) and
O((Int ¢ book_tickets(al,vl)) = <(Does ¢ call(vl))). Note that an inten-
tion requires an applicable plan; in BDI theory, intentions are desired states of
affair which an agents has committed itself to achieve (in practice, through the
execution of a plan). Further details of the language can be found in [I].

4 Practical Model Checking

In I, we defined a finite-state version of AgentSpeak(L), called AgentSpeak(F),
and we showed how to convert a set of AgentSpeak(F) programs into PROMELA,
as well as how to convert BDI properties into LTL formulee (following the trans-
lation approach mentioned above). We can then use the SPIN model checker to
verify multi-agent systems written in AgentSpeak(F). Recently, we introduced
an alternative approach where AgentSpeak(F) programs are translated to Java
code, thus allowing the use of JPF2 for model checking [2]. Note that before
model checking can start, one also needs to encode the environment where the
agents are to be situated in the input notation of the model checker being used.
One of the case studies we carried out to assess our
approach was the analysis of a simplified auction sce-
nario, illustrated in Figure 2l A simple environment
announces 10 auctions and states which agent is the
; winner in each one (the one with the highest bid).
3 There are three agents, written in AgentSpeak(F),

6 4 7 3 participating in these auctions. Agent agl is a very

j simple agent which bids 6 whenever the environment
@ @ announces a new auction. Agent ag2 bids 4, unless

Auctioning
Environment

it has agreed on an alliance with ag3, in which case
it bids 0. Agent ag3 tries to win the first T auctions,
where T is a threshold stored in its belief base. If it
does not win any auctions up to that point, it will
try to achieve an alliance with ag2 (by sending the appropriate message to it).
When ag2 confirms that it agrees to form an alliance, then ag3 starts bidding,
on behalf of them both, the sum of their usual bids (i.e., 7).

Initial results have indicated that, while Java provides a much more appro-
priate target language than PROMELA, JPF2 does not scale as well as SPIN.
Java is the language of choice in most practical implementations of mulit-agent
systems, and the Java model is much more clear and easily extensible; JPF2
also handles unbounded data structures, so we do not have to limit them during
translation time. We have used both model checkers for verifying that the system
described above satisfies the following specifications (among others):

Fig. 2. Auction System

Model Checking Multi-Agent Programs with CASP 113

(i) O(—(Bel ag3 winner(ag3)) A (Des ag3 alliance(ag3,ag2)) =
O(Int ag3 alliance(ag3, ag2)));

(i) ©((Bel ag2 alliance(ag3,ag2)) A (Bel ag3 alliance(ag3,ag2))); and

(iii) O((Bel ag2 alliance(ag3,ag2)) A (Bel ag3 alliance(ag3,ag2)) =
OOwinner(ag3)).

5 Ongoing and Future Work

We are currently attempting to improve the efficiency of the AgentSpeak(F)
models by optimisations on the PROMELA or Java code that is automatically
generated. We are also working on a deeper analysis of the advantages and dis-
advantages of those model checkers in the verification of AgentSpeak(F) systems.

As future work, we intend to examine symbolic model checking for
AgentSpeak(F), possibly by using NuSMV2 [3]. We also plan to combine our
present approach with deductive verification so that we can handle larger appli-
cations. Further, it would be interesting to add extra features to our approach to
agent verification (e.g., handling plan failure, allowing first order terms, allow-
ing variables in the specifications). Finally, we also plan as future work to verify

more ambitious applications, such as autonomous spacecraft control (along the
lines of H]).

Acknowledgements: This work has been partially supported by a Marie Curie fel-
lowship of the EC, contract HPMF-CT-2001-00065 (“Model Checking for Mobility”).

References

1. R. H. Bordini, M. Fisher, C. Pardavila, and M. Wooldridge. Model checking
AgentSpeak. 2nd Int. Joint Conf. on Autonomous Agents and Multi-Agent Sys-
tems, 2003.

2. R. H. Bordini, W. Visser, M. Fisher, and M. Wooldridge. Model checking a reactive
planning language for multi-agent systems. Submitted, 2003.

3. A. Cimatti et al.. NuSMV2: an opensource tool for symbolic model checking. 14th
Int. Conf. on Computer Aided Verification, LNCS 2404, Springer-Verlag, 2002.

4. M. Fisher and W. Visser. Verification of autonomous spacecraft control — a logical
vision of the future. Workshop on AI Planning and Scheduling For Autonomy in
Space Applications, co-located with TIME, 2002.

5. G. J. Holzmann. The Spin model checker. [EEFE Transaction on Software Engi-
neering, 23(5):279-295, May 1997.

6. A.S. Rao. AgentSpeak(L): BDI agents speak out in a logical computable language.
Tth MAAMAW Workshop, LNAI 1038, London, 1996. Springer-Verlag.

7. A.S. Rao and M. P. Georgeff. Decision procedures for BDI logics. Journal of Logic
and Computation, 8(3):293-343, 1998.

8. W. Visser, K. Havelund, G. Brat, and S. Park. Model checking programs. 15th Int.
Conf. on Automated Software Engineering. IEEE Computer Society, 2000.

9. M. Wooldridge. Reasoning about Rational Agents. The MIT Press, Cambridge, MA,
2000.

	Introduction
	AgentSpeak(L)
	Property Specification Language
	Practical Model Checking
	Ongoing and Future Work

