Bounded Model Checking and Induction:
From Refutation to Verification *

(Extended Abstract, Category A)

Leonardo de Moura, Harald Ruef}, and Maria Sorea**

SRI International
Computer Science Laboratory
333 Ravenswood Avenue
Menlo Park, CA 94025, USA
{demoura, ruess, sorea}@csl.sri.com
http://www.csl.sri.com/

Abstract. We explore the combination of bounded model checking and
induction for proving safety properties of infinite-state systems. In par-
ticular, we define a general k-induction scheme and prove completeness
thereof. A main characteristic of our methodology is that strengthened
invariants are generated from failed k-induction proofs. This strengthen-
ing step requires quantifier-elimination, and we propose a lazy quantifier-
elimination procedure, which delays expensive computations of disjunc-
tive normal forms when possible. The effectiveness of induction based on
bounded model checking and invariant strengthening is demonstrated
using infinite-state systems ranging from communication protocols to
timed automata and (linear) hybrid automata.

1 Introduction

Bounded model checking (BMC) [5Hl[7] is often used for refutation, where one
systematically searches for counterexamples whose length is bounded by some
integer k. The bound £ is increased until a bug is found, or some pre-computed
completeness threshold is reached. Unfortunately, the computation of complete-
ness thresholds is usually prohibitively expensive and these thresholds may be
too large to effectively explore the associated bounded search space. In addition,
such completeness thresholds do not exist for many infinite-state systems.

In deductive approaches to verification, the invariance rule is used for es-
tablishing invariance properties ¢ [TT[TO[I3IB]. This rule requires a property
which is stronger than ¢ and inductive in the sense that all initial states satisfy
1, and v is preserved under each transition. Theoretically, the invariance rule is
adequate for verifying a valid property of a system, but its application usually

* Funded by SRI International, by NSF Grant CCR-0082560, DARPA/AFRL-
WPAFB Contract F33615-01-C-1908, and NASA Contract B09060051.
** Also affiliated with University of Ulm, Germany.

W.A. Hunt, Jr. and F. Somenzi (Eds.): CAV 2003, LNCS 2725, pp. 14-[Z6] 2003.
© Springer-Verlag Berlin Heidelberg 2003



Bounded Model Checking and Induction: From Refutation to Verification 15

requires creativity in coming up with a sufficiently strong inductive invariant. It
is also nontrivial to detect bugs from failed induction proofs.

In this paper, we explore the combination of BMC and induction based on
the k-induction rule. This induction rule generalizes BMC in that it requires
demonstrating the invariance of ¢ in the first k states of any execution. Conse-
quently, error traces of length k are detected. This induction rule also generalizes
the usual invariance rule in that it requires showing that if ¢ holds in every state
of every execution of length k, then every successor state also satisfies . In its
pure form, however, k-induction does not require the invention of a strengthened
inductive invariant. As in BMC, the bound k is increased until either a viola-
tion is detected in the first k states of an execution or the property at hand is
shown to be k-inductive. In the ideal case of attempting to prove correctness of
an inductive property, 1-induction suffices and iteration up to a, possibly large,
complete threshold, as in BMC, is avoided. The k-induction rule is sound, but
further conditions, such as the restriction to acyclic execution sequences, must
be added to make k-induction complete even for finite-state systems [17].

One of our main contributions is the definition of a general k-induction rule
and a corresponding completeness result. This induction rule is parameterized
with respect to suitable notions of simulation. These simulation relations induce
different notions of path compression in that an execution path is compressed
if it does not contain two similar states. Many completeness results, such as k-
induction for timed automata, follow by simply instantiating this general result
with the simulation relation at hand. For general transition systems, we develop
an anytime algorithm for approximating adequate simulation relations for k-
induction.

Whenever k-induction fails to prove a property ¢, there is a counterexample
of length k + 1 such that the first k states satisfy ¢ and the last state does not
satisfy . If the first state of this trace is reachable, then ¢ is refuted. Otherwise,
the counterexample is labeled spurious. By assuming the first state of this trace
is unreachable, a spurious counterexample is used to automatically obtain a
strengthened invariant. Many infinite-state systems can only be proven with
k-induction enriched with invariant strengthening, whereas for finite systems
the use of strengthening decreases the minimal k for which a k-induction proof
succeeds.

Since our invariant strengthening procedure for k-induction heavily relies
on eliminating existentially quantified state variables, we develop an effective
quantifier elimination algorithm for this purpose. The main characteristic of
this algorithm is that it avoids a potential exponential blowup in the initial
computation of a disjunctive normal form whenever possible, and a constraint
solver is used to identify relevant conjunctions. In this way the paradigm of lazy
theorem proving, as developed by the authors for the ground case [7], is extended
to first-order formulas.

The paper is organized as follows. Section [2 contains background material
on encodings of transition systems in terms of logic formulas. In Section [ we
develop the notions of reverse and direct simulations together with an anytime



16 Leonardo de Moura, Harald Ruef3, and Maria Sorea

algorithm for computing these relations. Reverse and direct simulations are used
in Section @l to state a generic k-induction principle and to provide sufficient con-
ditions for the completeness of these inductions. Sections[5] and [6] discuss invari-
ant strengthening and lazy quantifier elimination. Experimental results with k-
induction and invariant strengthening for various infinite-state protocols, timed
automata, and linear hybrid systems are summarized in Section [[l Comparisons
to related work are in Section

2 Background

Let V := {z1,...,2,} be a set of variables interpreted over nonempty domains
D; through D,,, together with a type assignment 7 such that 7(z;) = D;. For
a set of typed variables V', a variable assignment is a function v from variables
x € V to an element of 7(z). The variables in V := {z1,...,z,} are also called
state variables, and a program state is a variable assignment over V.

All the developments in this paper are parametric with respect to a given
constraint theories C, such as linear arithmetic or a theory of bitvectors. We
assume a computable function for deciding satisfiability of a conjunction of con-
straints in C. A set of Boolean constraints, Bool(C), includes all constraints in
C and is closed under conjunction A, disjunction V, and negation —. Effective
solvers for deciding the satisfiability problem in Bool(C) have been previously
described [716].

A tuple (V,I,T) is a C-program over V, where interpretations of the typed
variables V' describe the set of states, I € Bool(C(V)) is a predicate that de-
scribes the initial states, and 7" € Bool(C(V U V")) specifies the transition re-
lation between current states and their successor states (V' denotes the current
state variables, while V' stands for the next state variables). The semantics of a
program is given in terms of a transition system M in the usual way.

For a program M = (V,I,T), a sequence of states m(sg, $1,...,S,) forms a
path through M if Ay, ., T(si,si+1). A state s is reachable in M if there is a
path m(sg, 81, ..., Sn—1,s) through M and I(s¢), and a state property ¢ € C(V) is
invariant in M iff p(s) holds for every reachable state s in M. A counterexample
for a property ¢ is a path 7 (sg,...,s,) such that I(sg) and —p(s,), and the
length len(7) of such a counterexample is given by the number of states in this
path.

Typical programming constructs can be rewritten into the program syntax
presented above. For example, Dijkstra’s guarded commands are encoded in
terms of a disjunction of conjunctions of guards g(z1,...,z,) and updates z; =
fi(z1,...,zy,) for all variables x;. Programs with external, non-deterministic
inputs are defined by partitioning the set of variables into input variables, which
are unconstrained, and the other state variables, whose next-state values are
constrained by the transition relation.

Throughout this paper we use timed automata [2], which are state-transition
graphs augmented with a finite set of real-valued clocks, as a prototypical class
of infinite-state systems. Decidability of the model-checking problem for timed



Bounded Model Checking and Induction: From Refutation to Verification 17

automata rests on the fact that the space of clock valuations is partitioned into
finitely many clock regions. Two clock valuations vy, vg that belong to the same
region are (region) equivalent, denoted as v1 ~ 14 v2. This region equivalence is
a stable quotient relation, that is, whenever ¢ ~74 u and T'(q,q’), there exists
a state v’ such that T'(u,u’) and ¢’ ~74 v’ [2]. Encoding of timed automata
in terms of logical programs with linear arithmetic constraints are described
in [19]. In particular, program states consist of a location and nonnegative real
interpretations of clocks. For timed automata we restrict ourselves to proving
so-called clock constraints ¢, such that ¢ ~74 u implies that ¢(q) iff p(u).

3 Direct and Reverse Simulation

The notions of direct and reverse simulation as developed here lay out the foun-
dation for the completeness results in Section [

Definition 1 (Direct / Reverse Simulation). Let M = (V,I,T) be a pro-
gram and ¢ a state formula over V. We define the functors Fy and F,. that map
binary relations R over V in the following way.

[ if mp(s1) then —p(s2)

Fa(R)(s1, 82) = { clse Vs, . T(s1, ) = 3s} . R(s),5h) A T(s3,sL)
[if I(s1) then I(s2)

Er(R) (51, 82) = { clse Vst . T(s),s1) = 3s . R(s,5h) A T(sh,s2)

A direct simulation over V with respect to ¢ is any binary relation < over V'
that satisfies < C Fy(=). Similarly, a reverse simulation over V with respect to
 is any binary relation < over V that satisfies < C F,.(=).

In contrast to reverse simulations, direct simulations depend on a state formula
. Also, the definition of direct simulation is inspired by the notion of stable
relations above. Direct (reverse) simulations are usually denoted by <4 (=,). The
following direct and reverse simulations are used as running examples throughout
the paper.

Example 1. The empty relation a=yb := false is a direct and a reverse simula-
tion.

Ezample 2. Equality (=) between states is a direct and a reverse simulation.

Ezample 3. The relation s1=rs2 := I(s1) AI(s2) is a reverse simulation, where
I is the predicate for describing the set of initial states of the given program.

Ezample 4. Now, consider programs (V,I,T) with inputs such that input(zx)
holds iff = is an input variable. The relation

$1.=; S2 := for all variables x € V . input(z) or s1(x) = sa2(x),



18 Leonardo de Moura, Harald Ruef3, and Maria Sorea

with s(x) denoting the value of the variable x in the state s, is a reverse simula-
tion, since the values of the input variables are not constrained by the predicate
I and their next values are not constrained by T'. Obviously, for transition sys-
tems with inputs, the relation s; =; s is weaker than =, and therefore gives rise
to shorter paths.

Example 5. We now consider timed automata programs and clock constraints.
The region equivalence ~ 74, which give rise to finitely many clock regions, is
stable, and therefore a direct simulation.

The notions of direct and reverse simulation are modular in the sense that
the union of direct (reverse) simulations is also a direct (reverse) simulation.

Proposition 1 (Modularity). If <; and <5 are direct (reverse) simulations,
then <7 U =<3 is also a direct (reverse) simulation.

This property follows directly from the definitions of direct (reverse) simulations
in Definition Mand from the monotonicity of the functors F,; and F,.. For example,
the reverse simulations <; and =; in Examples Bl and [ may be combined to
obtain a new reverse simulation.

Given a program M = (V,I,T) and a property ¢, the associated largest
direct (reverse) simulation relation <p (<pg) is obtained as the greatest fixpoint
of the functor Fy (F,) in Definition [l These fixpoints exist, since Fy and F,. are
monotonic. However, the fixpoint iterations are often prohibitively expensive,
and a direct (reverse) simulation is only obtained on convergence of the iteration.
The iteration in Proposition [ provides a viable alternative in that a reverse
(direct) simulation is refined to obtain a stronger reverse (direct) simulation.
The proof of the proposition below follows from the definitions of reverse (direct)
simulations, from the monotonicity of the functors F,. (F,), and from modularity
(Proposition [T]).

Proposition 2 (Anytime Iteration). If <, (=) is a reverse (direct) sim-
ulation, then for all n > 0 the relation =<, , (=4,) is also a reverse (direct)
simulation:

r =d,0 ‘= =24d
rn—1 U Fr(jr,nfl) jd,n = jd,nfl U Fd(jd,nfl)

jT,O =

jr,n

Consequently, this iteration gives rise to an anytime algorithm for computing
direct (reverse) simulations, and equality =, for example, may be used as seed,
since it is both a direct and a reverse simulation (see Example[2)). Also, quantifier
elimination algorithms such as the one in Section[@ may be used in this iteration.

4 Completeness of k-Induction

Given the notions of direct and reverse simulations, we develop sufficient con-
ditions for proving completeness of k-induction. These results are based on re-
stricting paths to not contain states that are similar with respect to a given direct
or reverse simulation. For direct (reverse) simulations we define a compressed



Bounded Model Checking and Induction: From Refutation to Verification 19

)

Fig. 1. Incompleteness of k-induction.

path w.r.t. to the given direct (reverse) simulation as a path m(sg,s1,...,Sn)
not containing any s;, s; with j < i (i < j) such that s; directly (reversely)
simulates s;.

Definition 2 (Path Compression).

— A path 7=34(sq, 81,...,8,) is compressed w.r.t. the direct simulation < if:
= —
T29(80, 81,y Sn) = T(S0, 81y, 8n) A /\ SiAdSj-
0<j<i<n
— A path 737 (s0, 81, .., 8,) is compressed w.r.t. the reverse simulation =<, if:
= —
T2 (80,815« ySn) i= (80,81, -+ Sn) A /\ $iArS;.
0<i<j<n

A path that is compressed with respect to the reverse and the direct simulations
=, and =< is denoted by rd,

For example, a path 7(sg, ..., s,) is compressed w.r.t. the reverse simulation
(=) from Example 2 iff it is acyclic. Moreover, given the reverse simulation <j
from Example B, a path 7(sq,...,s,) is compressed w.r.t. <; iff it contains at

most one initial state. Obviously, for transition systems with inputs, the relation
(=i) (see Example H) is weaker than (=), and therefore give rise to shorter
compressed paths. We have collected all ingredients for defining k-induction for
arbitrarily compressed paths.

Definition 3 (k-Induction). Let M = (V,I,T) be a program, k an integer,
=<, a reverse simulation, and <4 a direct simulation. The induction scheme of
depth k, IND="4 (k) allows one to deduce the invariance of o in M if the following
holds.

— I(s9) A m3rd(sg,...,85-1) — @(s0) A ... A @(Sp_1)
= @(sn) A oo A p(Sntk-1) A er'd(smuwsnﬂc) — ©(Sn+k)

For example, given the empty relationship < from Example [T IND=? re-
duces to the naive, incomplete k-induction on arbitrary paths. Consider, for ex-
ample, the system in Figure [l and a property ¢, which is assumed to hold only
in g4. Now, the execution sequence g3 ~ g3 ~ ...~ q3 ~ @4 is not k-inductive,

E
but it is ruled out under the acyclic path restriction. The complete k-induction
schemes in [I7], which consider only acyclic paths and paths that only visit ini-



20 Leonardo de Moura, Harald Ruef3, and Maria Sorea

tial states once can be recovered by instantiating Definition [3] with the relations
(=) (Example[2) and (=) (Example [3), respectively. Since both (=) and (<)
are reverse simulations, an induction scheme restricted to acyclic paths visiting
initial states at most once is obtained by modularity (Proposition [IJ).

Completeness of k-induction relies heavily on the notion of path compression.
We now state the main lemma.

Lemma 1 (Compressing non-r=¢ paths). Let 7(sg,...,5,) be a given
path; then:

1. There exists a 7= compressed path 7="(qo,...,qm), S-t- ¢n = s, and
m < n.

2. There exists a 7=4- compressed path 7=4(qo, .. ., ¢m), 5.t. o = s and m < n.

Proofsketch. Assume a path 7(sg, ..., $,), which is not compressed w.r.t. <,.

By Definition [ it follows that there are states s;,s; € m(so, ..., sn) such that
5;=rs;, and ¢ < j. We distinguish two cases. First, if s; is an initial state, then so
is s;, and therefore a shorter path 7(s;, ..., s,) is obtained as a counterexample.
Second, if s; is not an initial state, then s; # sg, and there exists a s;_1 such
that T'(s;—1, s;). Since s;=,s; it follows by Definition [lthat there is a state s;_;,
such that s;_1=,s,_; and T'(s]_;, s;). If 5,1 is initial state, then so is s}_;, and
since i < j a shorter path 7="(s,_y,s;,...,s,) is obtained. If s,_1 is not initial,
by repeating the above argument a shorter path is constructed. In both cases a
shorter path is obtained, if such path is not a compressed path, then it is further
reduced. The proof for m=¢- compressed paths works analogously.

IND="¢(k) is complete if: ¢ is an invariant of M iff there is a k such that
IND="4(k)(p). Now, completeness of k-induction follows from the main lemma [I]
above.

Theorem 1 (Completeness). IND="4(k) is a complete proof method iff
there is an upper bound on the length of the paths 7= (s, ..., s,).

Using the simulation from Example 2] Theorem [[lis instantiated to obtain the
following complete k-induction for finite-state systems.

Corollary 1. Let M be a finite-state program over V' and ¢ a state property
in V; then IND™ (k) induction is complete.

In general, k-induction for (=) is not complete for infinite-state systems. Con-
sider, for example, the program M = (I,T) over the integer state variable x
with I = (x = 0) and T = (2/ = z + 2), and the formula x # 3. Obviously, it
is the case that x # 3 is invariant in M, but there exists no k£ € IN such that
the property is proven by IND™ (k). However, k-induction is complete for timed
automata, since the equivalence relation ~ 4 is a direct simulation (Example[]),
and an upper bound on the length of the paths 7~ (s, ..., s,) is given by the
number of clock regions.

Corollary 2. Let M be a timed automata program over the clock evaluations
C and ¢ a clock constraint in C; then IND™% (k) induction is complete.

Similar results are obtained for other direct and reverse simulations and combi-
nations thereof.



Bounded Model Checking and Induction: From Refutation to Verification 21

i=y2+1 y21:<0\2/ 2 141 (1f<0v2)

=y2+ yl<y =yl + —(y1 <y

O SRt e O C
yl’:=0 y2' =0

Fig. 2. Bakery Mutual Exclusion Protocol.

5 Invariant Strengthening

Whenever k-induction fails to prove a property ¢, there is a counterexample
T = Sp,Sntls---,Snt+k such that the first k states satisfy ¢ whereas the last
state s,4, does not satisfy this property. If s, is indeed reachable, then ¢
is not invariant. Otherwise, the counterexample is labeled as spurious and it
is inconclusive whether ¢ is invariant or not. However, by assuming s, to be
unreachable, such a spurious counterexample is used to obtain a strengthened
invariant ¢ A =(sp).

Consider, for example, the property —(q4) for the system in Figure [l Induc-
tion of depth k = 1 fails, and the counterexample g3 ~ ¢4 is obtained. Now,
—(qa) is strengthened to obtain —(g4) A —=(g3), which is proven using 1-induction.
More generally, whenever the induction step of INDj“d(k) fails, the formula
Qs ey Snak) = @(8n) A oo Ap(Spak—1) AT (S oy Spak) A —0(Spik) is
satisfiable, and each satisfying assignment describes a counterexample for the
induction step. Thus, we define the predicate U(s) for representing the set
of possibly unreachable states, which may reach the bad state in k steps by
means of a 7374 path, U(s) = 35,11, ., 5n1k-Q(S, 8ni1s .-+, 8nsk). Now, ¢ is
strengthened as ¢ A =U(s), and quantifier elimination is used for transforming
this strengthened formula into an equivalent Boolean constraint formula. For the
general case, we use the quantifier elimination procedure in Section [6l Notice,
however, that for special cases such as guarded command languages, the quan-
tifiers in U(s) are eliminated using purely syntactic operations such as substitu-
tion, since all quantifications are over “next-state” variables x for which there
are explicit solutions f(.). An example might help to illustrate the combination
of k-induction, strengthening, and quantifier elimination.

Ezample 6. Consider the usual stripped-down version of Lamport’s Bakery pro-
tocol in Figure [2| with the initial value 0 for both counters y1 and y2 and the
mutual exclusion property M X defined by —(pcl = a3 A pc2 = b3). We apply
3-induction with the empty simulation relation <. The base step holds and the
induction step fails, thus we obtain

U(Sn) == Sn41,Sn+2, Sn+3- MX(STL) A MX(Sn+1) A
MX (Sn42) AT=0(Sp, Sng1, Snt2, Snts) A M X (spis)

with states s; of the form (pcl;, y1;, pe2;,y2;). Since the transitions of the Bakery
protocol are in terms of guarded commands, simple substitution is used to obtain



22 Leonardo de Moura, Harald Ruef3, and Maria Sorea

a quantifier-eliminated form, R(s), defined as
R(s) := (pcl = al Apc2 =02Ay2=10)V (pcl = a2 Apc2 =bl Ayl =0).

Now, the strengthened property M X (s) A —R(s) is proven using 3-induction.

6 Quantifier Elimination

Given a quantified formula Jvars. ¢ with ¢ € Bool(C), quantifier-elimination
procedures usually work by transforming ¢ into disjunctive normal form (DNF)
and distributing the existential quantifiers over disjunctions. Thus, one is left
with eliminating quantifiers from a set of existentially quantified conjunctions
of literals. We assume as given such a procedure C-ge. The main drawback of
these procedures is that there is a potential exponential blowup in the initial
transformation to DNF and C-¢ge might even return further disjunctions (as is
the case for Presburger arithmetic); this problem has been addressed for the
Boolean case by McMillan [14].

The quantifier elimination problem for invariant strengthening, as discussed
in Section [{] allows for a purely syntactic quantifier elimination as long as we
are restricting ourselves to guarded command programs. In these cases, C-ge just
applies the substitution rule (x ¢ vars(y))

(Bz.(z =) A p(x)) iff p();

possibly followed by simplification. Quantifier elimination by substitution has
already been used in the context of model checking, for example, by Coud-
ert, Berthet, and Madre [15] and more recently by Williams, Biere, Clarke,
Gupta [20], and Abdulla, Bjesse, Eén [1]. Another C-ge function is used in McMil-
lan’s quantifier elimination algorithm based on propositional SAT solving,
in that his C-ge(vars, ¢) simply deletes the literals in ¢, which contain a variable
in wars. In contrast, depending on the background theory, arbitrary complex
quantifier elimination procedures, such as the ones for Presburger arithmetic or
real-closed fields, can also be used here.

As motivated above, the initial DNF computation should usually be avoided
when possible. Given a set of existentially quantified variables vars and a quan-
tifier-free formula ¢ in Bool(C), the algorithm ge(vars, ¢) in Figure Blreturns a
formula in Bool(C) which is equivalent to Jvars. ¢. The procedure ge relies on
a satisfiability solver for formulas ¢ € Bool(C), which is assumed to enumerate
representations of sets of satisfiable models in terms of conjunctions of literals in
. Such a solver is described, for example, in [7J6]. These solutions are supposed
to be enumerated by successive calls to next-solution in Figure[3. Since there are
only a finite number of solutions in terms of subsets of literals, the function ge is
terminating. Moreover, minimal solutions or good over-approximations thereof,
as produced by the lazy theorem proving algorithm [7l6], accelerate convergence.

The variable ¢ in Figure B stores the current solution obtained by next-
solution, and the procedure C-qe applies quantifier elimination for conjunction. In



Bounded Model Checking and Induction: From Refutation to Verification 23

procedure ge(vars, ¢)

Y = false

loop
¢ := next-solution(p)
if ¢ = false then return v
¢ := C-qe(vars,c)
Y=V
pi=pA-c

Fig. 3. Lazy Quantifier Elimination.

many cases, C-qe just applies the substitution rule to remove quantified variables.
In order to obtain the next set of solutions, we rule out the current solutions by
updating ¢ with the value —¢’ instead of —c, since —¢’ is more restrictive.

Thus, the quantifier elimination procedure in Figure Bl avoids eager computa-
tion of a disjunctive normal form. Moreover, a solver for Bool(C) is used to guide
the search for relevant “conjunctions” in . In this way, the ge algorithm extends
the lazy theorem proving paradigm described in [76] to the case of first-order
reasoning.

Ezxample 7. Consider
Jz1,11 (o =1Vaze=3Vyo>1)Ax1 =x0—1Ay1 =yo + 1)
\Y ((ko==1Vaog=-3)Ax1 =20+ 2Ay1 =yo— 1)) Ax1 <0
A first satisfiable conjunction of literals is obtained by, say
ci=yo>1ANx1 =290 —1Ay1 =yo+ 1Az <O.

Now, application of the substitution rule yields ¢/ := yg > 1 Axzg — 1 < 0, and,
after updating ¢ with —¢’ a second solution is obtained as

ci=20=—-3Nx1=20+2ANy1 =9y — 1Az <O.

Again, applying the substitution rule, one gets ¢’ := 9 = —3Azy +2 < 0,
and, since there are no further solutions, the quantifier-eliminated formula is
(yo >1Axg—1< 0)\/(.%‘0 =-3ANxg+2< 0)

7 Experiments

We describe some of our experiments with k-induction and invariant strength-
ening. Our benchmark examples include infinite-state systems such as commu-
nication protocols, timed automata and linear hybrid systems In particular,
Table [l contains experimental results for the Bakery protocol as described ear-
lier, Simpson’s protocol [I8] to avoid interference between concurrent reads and

! These benchmarks are available at http://www.csl.sri.com/~ demoura/cav03examples



24 Leonardo de Moura, Harald Ruef3, and Maria Sorea

writes in a fully asynchronous system, well-known timed automata benchmarks
such as the train gate controller and Fischer’s mutual exclusion protocol, and
three linear hybrid automata benchmarks for water level monitoring, the leak-
ing gas burner, and the multi-rate Fischer protocol. Timed automata and linear
hybrid systems are encoded as in [19]. Starting with £ = 1 we increase k until
k-induction succeeds. We are using invariant strengthening only in cases where
syntactic quantifier elimination based on substitution suffices. In particular, we
do not use strengthening for the timed and hybrid automata examples, that is,
C-qe tries to apply the substitution rule, if the resulting satisfiability problems
for Boolean combinations of linear arithmetic constraints are solved using the
lazy theorem proving algorithm described in [7] and implemented in the ICS
decision procedures [9].

System Name Proved with k|Time|Refinements
Bakery Protocol 3 0.21 1
Simpson Protocol 2 0.16 2
Train Gate Controller 5 0.52 0
Fischer Protocol 4 0.71 0
Water Level Monitor 1 0.08 0
Leaking Gas Burner 6 1.13 0
Multi Rate Fischer 4 0.84 0

Table 1. Results for k-induction. Timings are in seconds.

The experimental results in Table 0l are obtained on a 2GHz Pentium-IV
with 1Gb of memory. The second column in Table [ lists the minimal % for
which k-induction succeeds, the third column includes the total time (in sec-
onds) needed for all inductions from 0 to k, and the fourth column the number
of strengthenings. Timings do not include the one for quantifier elimination,
since we restricted ourselves to syntactic quantifier elimination only. Notice that
invariant strengthening is essential for the proofs of the Bakery protocol and
Simpson’s protocol, since k-induction alone does not succeed for any k.

Simpson’s protocol for avoiding interference between concurrent reads and
writes in a fully asynchronous system has also been studied using traditional
model checking techniques. Using an explicit-state model checker, Rushby [16]
demonstrates correctness of a finitary version of this potentially infinite-state
problem. Whereas it took around 100 seconds for the model checker to verify
this stripped-down problem, k-induction together with invariant strengthening
proves the general problem in a fraction of a second. Moreover, other nontrivial
problems such as correctness of Illinois and Futurebus cache coherence protocols,
as given by [§], are easily established using 1-induction with only one round of
strengthening.



Bounded Model Checking and Induction: From Refutation to Verification 25

8 Related Work

We restrict this comparison to work we think is most closely related to ours.
Sheeran, Singh, and Stalmarck’s [I7] also use k-induction, but their approach is
restricted to finite-state systems only. They consider k-induction restricted to
acyclic paths and each path is constrained to contain at most one initial state.
These inductions are simple instances of our general induction scheme based on
reverse and direct simulations. Moreover, invariant strengthening is used here to
decrease the minimal k for which k-induction succeeds.

Our path compression techniques can also be used to compute tight com-
pleteness thresholds for BMC. For example, a compressed recurrence diameter
is defined as the smallest n such that I(sg) A 7=7(sq,...,s,) is unsatisfiable.
Using equality (=) for the simulation relation, this formula is equivalent to the
recurrence diameter in [4]. A tighter bound of the recurrence diameter, where
values of input variables are ignored, is obtained by using the reverse simulation
=;. In this way, the results in [I2] are obtained as specific instances in our general
framework based on reverse and direct simulations. In addition, the compressed
diameter is defined as the smallest n such that

n—1
=r
I(s0) Am=rd(s0,...,8,) A /\ 77" (S0, 84)
=0

is unsatisfiable, where W?"’d(so, 8i) = 3s1,..., 8 1.T=79(80, 81, 5_1,5i)
holds if there is a relevant path from sy to s; with ¢ steps. Depending on the
simulation relation, this compressed diameter yields tighter bounds for the com-
pleteness thresholds than the ones usually used in BMC [4].

9 Conclusion

We developed a general k-induction scheme based on the notion of reverse and
direct simulation, and we studied completeness of these inductions. Although any
k-induction proof can be reduced to a 1-induction proof with invariant strength-
ening, there are certain advantages of using k-induction. In particular, bugs of
length k are detected in the initial step, and the number of strengthenings re-
quired to complete a proof is reduced significantly. For example, a 1-induction
proof of the Bakery protocol requires three successive strengthenings each of
which produces 4 new clauses. There is, however, a clear trade-off between the
additional cost of using k-induction and the number of strengthenings required
in 1-induction, which needs to be studied further.

References

1. P. A. Abdulla, P. Bjesse, and N. Eén. Symbolic reachability analysis based on
SAT-solvers. In S. Graf and M. Schwartzbach, editors, TACAS 2000, volume 1785
of LNCS, pages 411-425. Springer-Verlag, 2000.



26

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Leonardo de Moura, Harald Ruef3, and Maria Sorea

R. Alur. Timed automata. In Computer-Aided Verification, CAV 1999, volume
1633 of Lecture Notes in Computer Science, pages 822, 1999.

S. Bensalem and Y. Lakhnech. Automatic generation of invariants. Formal Methods
in System Design, 15:75-92, 1999.

A. Biere, A. Cimatti, E. M. Clarke, and Y. Zh. Symbolic model checking without
BDDs. Lecture Notes in Computer Science, 1579, 1999.

E. M. Clarke, A. Biere, R. Raimi, and Y. Zhu. Bounded model checking using
satisfiability solving. Formal Methods in System Design, 19(1):7-34, 2001.

L. de Moura and H. Rue. Lemmas on demand for satisfiability solvers. Annals of
Mathematics and Artificial Intelligence, 2002. Accepted for publication.

L. de Moura, H. Ruef}; and M. Sorea. Lazy theorem proving for bounded model
checking over infinite domains. In Conference on Automated Deduction (CADE),
volume 2392 of LNCS, pages 438-455. Springer-Verlag, July 27-30 2002.

G. Delzanno. Automatic verification of parameterized cache coherence protocols.
In Computer Aided Verification (CAV’00), pages 53-68, 2000.

J.-C. Filliatre, S. Owre, H. Ruef}; and N. Shankar. ICS: Integrated Canoniza-
tion and Solving. In Proceedings of CAV’2001, volume 2102 of Lecture Notes in
Computer Science, pages 246-249. Springer-Verlag, 2001.

S. M. German and B. Wegbreit. A synthesizer of inductive assertions. IEEE
Transactions on Software Engineering, 1(1):68-75, Mar. 1975.

S. M. Katz and Z. Manna. A heuristic approach to program verification. In N. J.
Nilsson, editor, Proceedings of the 3rd IJCAI pages 500-512, Stanford, CA, Aug.
1973. William Kaufmann.

D. Kroening and O. Strichman. Efficient computation of recurrence diameters. In
Proceedings of VMCAI’03, Jan. 2003.

C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, and S. Bensalem. Property preserving
abstractions for the verification of concurrent systems. Formal Methods in System
Design, 6(1):11-44, Jan. 1995.

K. McMillan. Applying SAT methods in unbounded symbolic model checking. In
Computer-Aided Verification, CAV 2002, volume 2404 of LNCS. Springer-Verlag,
2002.

O. Coudert, C. Berthet, and J.C. Madre. Verification of synchronous sequential
machines using symbolic execution. In Proceedings of the International Workshop
on Automatic Verification Methods for Finite State Systems, volume 407 of LNCS,
pages 365-373, Grenoble, France, June 1989. Springer-Verlag.

J. Rushby. Model checking Simpson’s four-slot fully asynchronous communication
mechanism. Technical report, CSL, SRI International, Menlo Park, Menlo Park,
CA, July 2002.

M. Sheeran, S. Singh, and G. Stalmarck. Checking safety properties using induction
and a SAT-solver. LNCS, 1954:108, 2000.

H. R. Simpson. Four-slot fully asynchronous communication mechanism. I[EFE
Proceedings, Part E: Computers and Digital Techniques, 137(1):17-30, Jan. 1990.
M. Sorea. Bounded model checking for timed automata. In Proceedings of MTCS
2002, volume 68 of Electronic Notes in Theoretical Computer Science, 2002.

P. F. Williams, A. Biere, E. M. Clarke, and A. Gupta. Combining decision diagrams
and SAT procedures for efficient symbolic model checking. In Proc. Computer
Aided Verification (CAV), volume 1855 of LNCS. Springer-Verlag, 2000.



	Introduction
	Background
	Direct and Reverse Simulation
	Completeness of k-Induction
	Invariant Strengthening
	Quantifier Elimination
	Experiments
	Related Work
	Conclusion



