HERMES: An Automatic Tool for Verification of
Secrecy in Security Protocols*

Liana Bozga, Yassine Lakhnech, and Michaél Périn

VERIMAG, Centre Equation7 2 av. de Vignate, 38610 Gieres, France
{1bozga,lakhnech,perin}@imag. fr

1 Introduction

Cryptography is not sufficient for implementing secure exchange of secrets or
authentification. Logical flaws in the protocol design may lead to incorrect be-
havior even under the idealized assumption of perfect cryptography. Most of
protocol verification tools are model-checking tools for bounded number of ses-
sions, bounded number of participants and in many case also a bounded size
of messages [ITIRE[I0]. In general, they are applied to discover flaws in cryp-
tographic protocols. On the contrary, tools based on induction and theorem
proving provide a general proof strategy [I4], but they are either not automatic
with exception of [4] or the termination is not guaranteed.

In this paper, we present HERMES, a tool dedicated to the verification of
secrecy properties of cryptographic protocols. HERMES places no restriction on
the size of messages, neither on the number of participants, nor on the number
of sessions. Given a protocol and a secret, HERMES provides either an attack
or an invariant on the intruder knowledge that guarantees that the secret will
not be revealed by executing the protocol. Moreover, when a protocol is proved
correct, it returns a proof tree that can be exploited for certification. HERMES
is available online from the authors’ webpage.

2 The Model and the Verification Method

We give a sketchy idea of the verification method underlying HERMES. A formal
and complete presentation of this method can be found in [I]. Cryptographic
protocols can be modeled as a set of transitions of the form ¢t — ¢’ where ¢, ¢/
are terms contructed by applying pairing and the encryption operator {_} k, to
some free variables and the parameters of a session, which are the principals,
the fresh nonces, and the fresh keys of the session. The intruder is modeled by
additional transitions due to Dolev-Yao [6]. They can be seen as a deductive
system that describes the messages that the intruder can deduce and forge from
the messages sent during the protocols execution. A secrecy goal states that
several designated messages (the secrets) should not be made public: a secret s
is defined by a term too.

* This work and the developpement the LAEVA language and accompanying tools
EvATRANS, SECURIFY, CPV and HERMES was supported by the RNTL project EVA
(Explication et Vérification Automatique de Protocoles Cryptographiques).

W.A. Hunt, Jr. and F. Somenzi (Eds.): CAV 2003, LNCS 2725, pp. 219-222Z] 2003.
© Springer-Verlag Berlin Heidelberg 2003

220 Liana Bozga, Yassine Lakhnech, and Michaél Périn

2.1 Description of a Protocol and Its Properties

Along the paper we illustrate the main step of the verification on the Needham-
Schroeder-Lowe Protocol. Its specification is given below in LAEVA, a high level
specification language designed for describing security protocols and their prop-
erties. It is compiled by EVATRANS into a concrete operational model and a
property to check that both constitute the inputs to three automatic verification
tools developped in the EVA project: SECURIFY [4], CPV [7] and HERMES [1].

Needham_Schroeder_Lowe

A, B : principal

Na, Nb : number

keypair pbk,prk (principal)

pbk and prk are key constructors that take a prin-
cipal and return an asymmetric key: pbk(4) stands
for public key of principal A. The private key of 4,
denoted by prk(4), is the inverse of pbk(4).

everybody knows pbk The knowledge of the principals is needed to gen-
A knows A, B, prk(A) erate the operational model of the protocol ; it is
B knows B, prk(B) used to rule out ambiguities.

The protocol specification is close to the standard
notation. It describes an ideal session between an

1.A->B: {A, Na}_(pbk(B)) initiator (role A) and a responder (role B). The
2.B->A: {Na, Nb,B}_(pbk(A)) | proles A, B, and the monces Na, Nb that they cre-
3.A->B: {Nb}_(pbk(B)) ate are the parameters of a session. With the *

symbol, HERMES considers an unbounded number
s.session* {A,B,Na,Nb} of sessions in parallel. For debugging purpose, it

can also run with a fixed number of sessions.

assume secret (prk(B@s.A) means that the private key —
secret (prk(A)@s.A), of the entity playing the role B, from A’s point of
secret (prk(B)@s.B), view in session s — is unknown to the intruder. Se-
secret (prk(B0s.A)), crecy hypothesis on keys are needed to reason about
secret (prk(AQs.B)) encrypted messages.

claim HERMES checks that secrecy properties hold
*A*G secret(prk(A)@s.A), *Always and *Globally. The first two claims require
*AxG secret (prk(B)@s.B), that the initial secrets remain secret. The two oth-
*AxG secret(Na@s.A), ers asks that the nonces Na and Nb created by role
*A*G secret (Nb@s.B) A (resp. role B) in session s are secret.

This specification leads to three rules parameterized by (A, B, Ny, Ny) (see be-
low). Then, a session of the protocol is completely defined by instantiating the
roles A and B with some principals, and N,, N, with two fresh nonces. On the
other hand, n; and ns denote free variables which are local to the session.

1) = (o) Ay g {Na 2 Bl
{Aa Na}pbk(B) ’ {nl, Ny, B}pbk(A) ' {n2 }pbk(B)
2.2 Abstraction and Verification Steps

We reduce the model with unbounded number of sessions in parallel to an fi-
nite set of rules which can be applied infinitely and in any order. The rule are

HERMES: An Automatic Tool for Verification of Secrecy 221

obtained by applying the safe abstraction of [3] that distinguishes only one hon-
est principal H and the intruder I. Identifying principals means also identifying
their nonces and keys. Hence, the session to consider are reduced to: the ses-
sion we observe, i.e. (H,H, N,, Np), the sessions with a dishonest participant
(I,H,N" N/ and (H,I,NJ N/, and the others sessions between honest
participants (H, H, N™ N/™), see [1] for details.

Given this abstract model of the protocol, HERMES computes the set of mes-
sages that protect the secrets in all sent messages. Intuitively, such protections
are terms of the form {z}x where the inverse key K ! is not known by the
intruder. The hypotheses on secret keys are used to define an initial superset P
of protecting messages, which is then refined by a fixpoint computation. At each
step, one transition ¢ — ' of the abstract protocol is analyzed and bad protec-
tions are removed from P or new secrets are added to S, see [I] for details.

The infinite set P of protections is represented as two sets (G, B) of terms.
Roughly speaking, the pair (G, B) is meant for the set of ground messages that
are instances of (good) terms in G but do not unify with (bad) terms of B.

We provided HERMES with a widening operator that forces termination in
the presence of rules that can loop and produce an infinite set of growing bad
terms. At termination, HERMES yields an augmented set of secrets S” (S C S”)
and either a representation of a set of protecting messages P’ (P’ C P) that
protect S’ or an attack in case a secret is revealed.

2.3 Application to Our Running Example

We illustrate our approach on the abstract model of the Needham-Schroeder-
Lowe Protocol. HERMES starts with the set of secrets S = {Ng, Ny, prk(H)}, the
set of good patterns G = {{zs}per@ } and an empty set of bad patterns. The
fixpoint computation leads to the same set of secrets, the same good patterns
and an augmented set of bad protections B’ that consists in four patterns:

AN o, I} oy 3 ANTT, sup(@s, 1), H} pory 5 {@s, L tporan 3 {Na, sup(zs, I),H} porn

HI
Na s I porcn , which is the

{s}por(n)
third rule of session (H, I, N, N}") in the abstract model. Since the conclusion

of this rule reveals the secret x; to the intruder, we have to remove from the
good protections the particular case of messages of the form { N xs, I'} pprm-
HERMES stops when no new bad pattern or secret are generated. We then con-
clude that the protocol satisfies the secrecy property in all initial configurations
where the secrets in S” appears only in messages in compliance with (G, B'). In
our example, the nonces N, and N, of S’ do not put constraints on the initial
configurations since they do not appear at all before the observed session. Fi-
nally, the set of secrets S’ restricts the initial configurations to those where the
key prk(H) was never sent, or sent with a protection in compliance with (G, B’).
In the original version of the protocol due to Needham-Schroeder, the identity
of role B did not appear in message 2. Applied to this version, HERMES requires
{H, N} por() to be secret. Obviously, this message can be forged by the intruder.
The exploration tree computed by HERMES shows an attack that reveals the
secret Np,. This corresponds to the well known attack discovered by Lowe.

The first one of these bad patterns is obtained from

222 Liana Bozga, Yassine Lakhnech, and Michaél Périn

3 Experimental Results and Future Work

The following table summarizes the results obtained by HERMES for secrecy
properties of protocols from Clark-Jacob’s survey [2]. Surprisingly we have not
encountered any false attack on any of these protocols, although one could con-
struct a protocol that leads to a false attack. We are currently working on extract-
ing a proof for the Coq prover from the exploration tree provided by HERMES.

| Protocol name | result [time (sec)]| Protocol name] result | time (sec)]
Needham-Schroeder-Lowe safe 0.02 Yahalom safe 12.67
Wide Mouthed Frog (modified) | safe 0.01 Kao-Chow safe 0.07
Neumann-Stubblebine safe” 0.04 Otway-Rees safe” 0.02
Andrew Secure RPC Attack 0.04 Woo and Lam | safe 0.06
Needham-Schroeder Public Key | Attack 0.01 Skeme safe 0.06
Needham-Schroeder Public Key (with a key server) Attack 0.90
Needham-Schroeder Symmetric Key Attack 0.04
Denny Sacco Key Distribution with Public Key Attack 0.02
ISO Symmetric Key One-Pass Unilateral Authentication Attack 0.01
ISO Symmetric Key Two-Pass Unilateral Authentication safe 0.01

* There is a known attack of the untyped version of the protocol. Discovering this type
attack automatically requires to deal with non-atomic keys. This is not yet implemented.

References

1. L. Bozga, Y. Lakhnech, and M. Périn. Abstract interpretation for secrecy using
patterns. In Tools and Algorithms for the Construction and Analysis of Systems,
vol. 2619 of LNCS, p. 299-314, 2003.

2. J. Clark and J. Jacob. A survey on authentification protocol literature. Available
at the url http://www.cs.york.ac.uk/~jac/papers/drareviewps.ps, 1997.

3. H. Comon-Lundh and V. Cortier. Security properties: Two agents are sufficient.
In European Symposium On Programming, vol. 2618 of LNCS, p. 99-113, 2003.

4. V. Cortier, J. Millen, and H. Ruef. Proving secrecy is easy enough. In Computer
Security Foundations Workshop, p. 97-110, 2001.

5. G. Denker and J. Millen. The CAPSL integrated protocol environment. In IEEE
DARPA Information Survivability Conference and Ezxposition, p. 207-222, 2000.

6. D. Dolev and A. C. Yao. On the security of public key protocols. Transactions
on Information Theory, 29(2):198-208, 1983.

7. J. Goubault-Larrecq. A method for automatic cryptographic protocol verification.
In International Workshop on Formal Methods for Parallel Programming: Theory
and Applications, vol. 1800 of LNCS, p. 977-984, 2000.

8. G. Lowe. Casper: A compiler for the analysis of security protocols. In Computer
Security Foundations Workshop, p. 18-30, 1997.

9. L. Paulson. Proving properties of security protocols by induction. In Computer
Security Foundations Workshop, p. 70-83, 1997.

10. M. Rusinowitch and M. Turuani. Protocol insecurity with finite number of sessions
is NP-complete. In Computer Security Foundations Workshop, p. 174190, 2001.

11. S. Schneider. Verifying authentication protocols with CSP. In Computer Security
Foundations Workshop, p. 3-17, 1997.

	Introduction
	The Model and the Verification Method
	Description of a Protocol and Its Properties
	Abstraction and Verification Steps
	Application to Our Running Example

	Experimental Results and Future Work

