Abstract
In this paper, we focus on solving games in recursive game graphs that can model the control flow of sequential programs with recursive procedure calls. The winning condition is given as an ω-regular specification over the observable, and, unlike traditional pushdown games, the strategy is required to be modular: resolution of choices within a component should not depend on the context in which the component is invoked, but only on the history within the current invocation of the component. We first consider the case when the specification is given as a deterministic Büchi automaton. We show the problem to be decidable, and present a solution based on two-way alternating tree automata with time complexity that is polynomial in the number of internal nodes, exponential in the specification and exponential in the number of exits of the components. We show that the problem is Exptime-complete in general, and Np-complete for fixed-size specifications. Then, we show that the same complexity bounds apply if the specification is given as a universal co-Büchi automaton. Finally, for specifications given as formulas of linear temporal logic Ltl, we obtain a synthesis algorithm that is doubly-exponential in the formula and singly exponential in the number of exits of components.
This research was supported in part by ARO URI award DAAD19-01-1-0473, NSF award CCR99-70925, and NSF award ITR/SY 0121431. The second author was also supported by the MIUR in the framework of project “Metodi Formali per la Sicurezza e il Tempo” (MEFISTO) and MIUR grant 60% 2002.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Alur, R., Etessami, K., Yannakakis, M.: Analysis of recursive state machines. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 207–220. Springer, Heidelberg (2001)
Alur, R., Henzinger, T., Kupferman, O.: Alternating-time temporal logic. Journal of the ACM 49(5), 1–42 (2002)
Alur, R., La Torre, S., Madhusudan, P.: Modular strategies for recursive game graphs. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 363–378. Springer, Heidelberg (2003)
Ball, T., Rajamani, S.: The SLAM toolkit. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 260–264. Springer, Heidelberg (2001)
Benedikt, M., Godefroid, P., Reps, T.W.: Model checking of unrestricted hierarchical state machines. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 652–666. Springer, Heidelberg (2001)
Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown automata: Application to model-checking. In: Mazurkiewicz, A., Winkowski, J. (eds.) CONCUR 1997. LNCS, vol. 1243, pp. 135–150. Springer, Heidelberg (1997)
Büchi, J., Landweber, L.: Solving sequential conditions by finite-state strategies. Trans. Amer. Math. Soc. 138, 295–311 (1969)
Cachat, T.: Symbolic strategy synthesis for games on pushdown graphs. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 704–715. Springer, Heidelberg (2002)
Cachat, T.: Two-Way Tree Automata Solving Pushdown Games. In: Grädel, E., Thomas, W., Wilke, T. (eds.) Automata, Logics, and Infinite Games. LNCS, vol. 2500, pp. 303–317. Springer, Heidelberg (2002)
Chakrabarti, A., de Alfaro, L., Henzinger, T., Jurdzinski, M., Mang, F.: Interface compatibility checking for software modules. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 428–441. Springer, Heidelberg (2002)
Chen, H., Wagner, D.: MOPS: an infrastructure for examining security properties of software. In: Proc. 9th ACM Conf. on Comp. and Comm. Security (2002)
Esparza, J., Hansel, D., Rossmanith, P., Schwoon, S.: Efficient algorithms for model checking pushdown systems. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 232–247. Springer, Heidelberg (2000)
Kupferman, O., Vardi, M.: An automata-theoretic approach to reasoning about infinite-state systems. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 36–52. Springer, Heidelberg (2000)
Kupferman, O., Vardi, M., Wolper, P.: Module checking. Information and Computation 164(2), 322–344 (2001)
Pnueli, A.: The temporal logic of programs. In: Proc. of the 18th IEEE Symposium on Foundations of Computer Science, pp. 46–77 (1977)
Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Proc. 16th ACM Symposium on Principles of Programming Languages (1989)
Thomas, W.: Infinite games and verification. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 58–64. Springer, Heidelberg (2002)
Vardi, M.: Reasoning about the past with two-way automata. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 628–641. Springer, Heidelberg (1998)
Vardi, M., Wolper, P.: Reasoning about infinite computations. Information and Computation 115, 1–37 (1994)
Walukiewicz, I.: Pushdown processes: Games and model-checking. Information and Computation 164(2), 234–263 (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Alur, R., La Torre, S., Madhusudan, P. (2003). Modular Strategies for Infinite Games on Recursive Graphs. In: Hunt, W.A., Somenzi, F. (eds) Computer Aided Verification. CAV 2003. Lecture Notes in Computer Science, vol 2725. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45069-6_6
Download citation
DOI: https://doi.org/10.1007/978-3-540-45069-6_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-40524-5
Online ISBN: 978-3-540-45069-6
eBook Packages: Springer Book Archive