
TRIM: A Tool for Triggered Message Sequence Charts�

Bikram Sengupta and Rance Cleaveland

Department of Computer Science, SUNY at Stony Brook
Stony Brook, NY 11794-4400, USA
{sbikram,rance}@cs.sunysb.edu

Abstract. TRIM is a tool for analyzing system requirements expressed using
Triggered Message Sequence Charts (TMSCs). TMSCs enhance MSCs with ca-
pabilities for expressing conditional and partial behavior and with a refinement
ordering. This paper shows how the Concurrency Workbench of the New Century
may be adapted to check refinements between TMSC specifications.

1 Introduction

Triggered Message Sequence Charts (TMSCs) [14] are a scenario-based visual for-
malism for capturing requirements of distributed systems. TMSCs enhance traditional
MSCs [3] with capabilities for expressing conditional and partial behavior and with a
mathematically precise notion of refinement, which may be used to check whether one
set of requirements correctly elaborates on another. This paper presents TRIM, a tool
for checking refinement between TMSCs. The main features of TRIM are: (i) a textual
language for TMSCs that includes the algebraic combinators of [14]; (ii) a routine for
checking refinements among TMSC specifications; and (iii) a capability for generating
diagnostic information in the form of tests when one system fails to refine another.

TMSCs. Graphically, TMSCs, as exemplified in Fig. 1, extend MSCs in two respects.

I3I2I1

d

c

b

a

la

Fig. 1. An Example TMSC

The first is the dashed horizontal line cutting across
the instances (vertical axes) and partitioning the
sequences of events for each instance into a trigger
— the subsequence above the line — and an ac-
tion — the subsequence below. A TMSC requires
that if an instance performs its trigger, then it must
execute its action; otherwise, it is unconstrained.
The second new feature in TMSCs is the possibil-
ity of a hollow bar at the foot of each instance, as
in instances I1 and I3 in Fig. 1, and whose pres-
ence signals termination: no further behavior is
allowed. A bar’s absence (cf. instance I2) means
that there are no constraints on subsequent behav-
ior, which may be extended in the future. TMSCs

have an abstract textual syntax that is described formally in [14]; [15] compares and
contrasts TMSCs with other MSC-based formalisms.
� Research supported by NSF grants CCR-9988489 and CCR-0098037 and Army Research

Office grants DAAD190110003 and DAAD190110019.

W.A. Hunt, Jr. and F. Somenzi (Eds.): CAV 2003, LNCS 2725, pp. 106–109, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

TRIM: A Tool for Triggered Message Sequence Charts 107

tmsc.syn

tmsc.sos transitions function

PAC

(SML code)

Analysis Routines

CWB

Interface for TMSC

TRIM

Fig. 2. Implementing TRIM

TMSC Expressions. Single TMSCs capture individual system requirements. The work
in [14] also presents a set of operators for constructing structured collections of TMSCs.
The resulting TMSC expressions have the following syntax:

S ::= M (single TMSC) | X (variable)
| S; S (sequential composition) | S ‖ S (parallel composition)
| S ∓ S (delayed choice) | recX.S (recursive operator)
| S ⊕ S (internal choice) | S ∧ S (logical and)

The language includes programming-like constructs such as sequential and parallel
composition, delayed choice, and recursion (to express iterative behavior), as well as
more declarative operators such as internal choice and conjunction. The latter enable
TMSCs to capture logical as well as operational requirements. The semantics of TMSC
expressions is based on acceptance tress and the must preorder [12,14].

2 TRIM

TRIM supports the textual notation for TMSCs given in [14] and provides: a simulator
for executing TMSC expressions; a compilation tool for converting TMSC expressions
into manually inspectable acceptance trees for manual inspection (impractical for large
examples but often effective for smaller, early-stage artifacts); routines for checking
the refinement ordering between TMSC expressions, and for returning diagnostic in-
formation when refinement fails to hold. The tool also includes routines for checking
temporal properties of, and minimizing, finite-state TMSC expressions. The remainder
of this section briefly describes how TRIM is implemented and used.

Implementing TRIM. TRIM is implemented on top of the Concurrency Workbench
of the New Century (CWB-NC) [8,9], an easy-to-retarget verification tool for finite-
state systems. Instances of the CWB-NC consist of a front end that handles syntax and
semantic issues of design notations, and a back-end that implements the analysis routines,
including a simulator, a model checker, and several refinement-checking procedures. As
the CWB-NC computes the must preorder, a natural approach for TRIM is to develop a
TMSC front end for the CWB-NC. This is what we did; Fig. 2 gives an overview. The
remainder of this section describes some of the issues involved in this program.

108 Bikram Sengupta and Rance Cleaveland

CWB-NC front ends must contain: a parser, an unparser, and a routine for computing
the single-step transitions of system descriptions. The Process Algebra Compiler (PAC)
[7] is designed to simplify the task of implementing CWB-NC front ends. The PAC
generates front ends from design-language specifications describing the syntax of the
language in the form a YACC-like grammar and the semantics of the language given
as sets of Plotkin-style SOS rules [10]. The two specifications for a given language L
are stored in two different files: L.syn for the syntax and L.sos for the semantics.
Our initial goal was to use the PAC to generate the TMSC front end, and to this end we
needed to devise two files: tmsc.syn and tmsc.sos.

Implementing tmsc.syn was straightforward. Devising SOS rules proved trick-
ier. The semantics in [14] is essentially denotational; it defines the meaning of TMSC
expression operators as constructions mapping acceptance trees to acceptance trees.
It also allows for an arbitrary number of messages to be “pending”, i.e. sent but not
yet received. Both of these features pose problems for the CWB-NC, which requires
an operational rather than a denotational semantics and also needs semantic entities to
be finite-state. To cope with the former problem we gave SOS rules that are provably
equivalent to the original declarative semantics; the main subtlety involved handling the
interplay between nondeterminism and the conjunction operator. To help with the latter
we equipped the operational semantics with a parameter that can be used to bound the
number of messages in transit (i.e. the buffer size). This semantics thus approximates
the “true” semantics, although they coincide for TMSC expressions whose number of
pending messages never exceeds the parameter in the operational semantics.

We could not use the PAC to generate the semantic functions directly from our SOS
rules, owing to PAC restrictions. For example, PAC does not allow the definition of
mutually recursive auxiliary semantic relations; and yet our treatment of conjunction
required this. Hence, we wrote the transitions function by hand from the tmsc.sos
file, producing around 2,500 lines of SML code, and integrated it with the PAC-generated
parser to build the TRIM interface for the TMSC language; see Fig. 2.

Using TRIM. TRIM is a research prototype; we did not pay close attention to per-
formance issues in implementing the front end. Nevertheless, we have used TRIM to
process several different TMSC-based specifications, including a simple protocol for
atomic reading and writing [14]; the specification of an automated infusion pump used
in treating trauma patients [2,13]; the well-known steam-boiler example in [4,13]; and a
component of an air-traffic control system [1,15]. The resulting transition systems ranged
in size from 1,744 to 26,183 states, with the corresponding acceptance trees contain-
ing from 196 to 2,495 nodes. In all cases, refinements were proposed in terms of more
deterministic TMSC expressions, and were verified using TRIM. The counter-example
generation feature of CWB was a major advantage, especially because TRIM currently
supports only a text-based interface and complex TMSC expressions typed in by a user
are subject to typographical errors such as unintentional mistakes in message names.
The analysis times ranged from several minutes to several hours, although performance
improvements of two orders of magnitude are achievable, in our view.

Related Work. Several tools have been developed to support the use of scenarios in
design requirements. MESA [6] allows certain properties, such as process divergence to

TRIM: A Tool for Triggered Message Sequence Charts 109

be efficiently checked on MSCs. UBET ([5]) detects potential race conditions and timing
violations in an MSC, and also provides automatic test case generation over HMSCs.
The play-in/play-out approach of [11] is based on LSCs and has been implemented via a
tool called the play engine. The tool LTSA-MSC [16] supports the synthesis of behavior
models from MSC-based specifications and implied-scenario detection.

3 Conclusions and Future Work

We have presented TRIM, a tool that provides automated support for analyzing system
requirements given in the TMSC notation [14]. The tool provides a number of useful
routines, including a simulator and a refinement checker, that are inherited from the
CWB-NC verification tool on which it is based. Retargeting the CWB-NC to TMSCs
required us to adapt the semantic account of the notation given in [14] to (i) make it
operational and (ii) to bound pending messages. For future work, we plan to improve
the performance of the TRIM front end and to develop a graphical user interface.

References

1. Center-TRACON automation system (CTAS). URL:http://ctas.arc.nasa.gov/.
2. Integrated Medical Systems Inc. URL:http://www.lstat.com/lstat.html.
3. Message sequence charts (MSC). ITU-TS Recommendation Z.120, 1996.
4. J. R. Abrial, E. Börger, and H. Langmaack. Formal Methods for Industrial Applications:

Specifying and Programming the Steam Boiler Control. LNCS volume 1165, 1996.
5. R. Alur, G. J. Holzmann, and D. Peled. An analyzer for message sequence charts. Software

Concepts and Tools, 17(2):70–77, 1996.
6. H. Ben-Abdallah and S. Leue. MESA: Support for scenario-based design of concurrent

systems. Proc. TACAS’98, LNCS volume 1384:118–135.
7. R. Cleaveland, E. Madelaine, and S. Sims. A front-end generator for verification tools. Proc.

TACAS’95, LNCS volume 1019:153–173.
8. R. Cleaveland, J. Parrow, and B. Steffen. The Concurrency Workbench: A semantics based

tool for the verification of concurrent systems. ACM TOPLAS, 15(1):36–72, 1993.
9. R. Cleaveland and S. Sims. Generic tools for verifying concurrent systems. Science of

Computer Programming, 42(1):39–47, January 2002.
10. G.Plotkin. A structural approach to operational semantics. Technical report, University of

Aarhus, Denmark, 1981.
11. D. Harel and R. Marelly. Specifying and executing behavioral requirements: The play-in/

play-out approach. Software and System Modeling (SoSym), 2003.
12. M. Hennessy. Algebraic theory of processes. The MIT Press, 1988.
13. B. Sengupta and R. Cleaveland. Refinement-based requirements elicitation using triggered

message sequence charts. To appear in 2003 Intl. Requirements Engineering Conf.
14. B. Sengupta and R. Cleaveland. Triggered message sequence charts. Proceedings of ACM

SIGSOFT 2002, FSE-10.
15. B. Sengupta and R. Cleaveland. Towards formal but flexible scenarios. 2nd International

Workshop on Scenarios and State Machines: Models, Algorithms and Tools, at ICSE 2003.
16. J.Kramer S.Uchitel and J.Magee. LTSA-MSC: Tool support for behaviour model elaboration

using implied scenarios. Proc. TACAS’03.

	Introduction
	TRIM
	Conclusions and Future Work

