Skip to main content

On-Line Discovery of Dense Areas in Spatio-temporal Databases

  • Conference paper
Advances in Spatial and Temporal Databases (SSTD 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2750))

Included in the following conference series:

  • 886 Accesses

Abstract

Moving object databases have received considerable attention recently. Previous work has concentrated mainly on modeling and indexing problems, as well as query selectivity estimation. Here we introduce a novel problem, that of addressing density-based queries in the spatio-temporal domain. For example: “Find all regions that will contain more than 500 objects, ten minutes from now”. The user may also be interested in finding the time period (interval) that the query answer remains valid. We formally define a new class of density-based queries and give approximate, on-line techniques that answer them efficiently. Typically the threshold above which a region is considered to be dense is part of the query. The difficulty of the problem lies in the fact that the spatial and temporal predicates are not specified by the query. The techniques we introduce find all candidate dense regions at any time in the future. To make them more scalable we subdivide the spatial universe using a grid and limit queries within a pre-specified time horizon. Finally, we validate our approaches with a thorough experimental evaluation.

This work was partially supported by NSF grants IIS-9907477, EIA-9983445, IIS- 0220148 and Career Award 0133825.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agarwal, P., Arge, L., Vahrenhold, J.: Time responsive indexing schemes for moving points. In: Dehne, F., Sack, J.-R., Tamassia, R. (eds.) WADS 2001. LNCS, vol. 2125, p. 50. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  2. Agarwal, P.K., Arge, L., Erickson, J.: Indexing moving points. In: Proc. of the 19th ACM Symp. on Principles of Database Systems (PODS), pp. 175–186 (2000)

    Google Scholar 

  3. Agrawal, R., Gehrke, J., Gunopulos, D., Raghavan, P.: Automatic Subspace Clustering of High Dimensional Data for Data Mining Applications. In: Proc. of ACM SIGMOD Conference, June 1998, pp. 94–105 (1998)

    Google Scholar 

  4. Alon, N., Matias, Y., Szegedy, M.: The space complexity of approximating the frequency moments. Journal of Computer and System Sciences 58(1), 137–147 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Communications of the ACM 13(7), 422–426 (1970)

    Article  MATH  Google Scholar 

  6. Broder, A., Mitzenmacher, M.: Network Applications of Bloom Filters: A Survey. To appear in Allerton 2002 (2002)

    Google Scholar 

  7. Chen, C.-M., Ling, Y.: A sampling-based estimator for Top-k query. In: Proc of IEEE ICDE (2002)

    Google Scholar 

  8. Choi, Y.-J., Chung, C.-W.: Selectivity estimation for spatio-temporal queries to moving objects. In: Proc. of ACM SIGMOD (2002)

    Google Scholar 

  9. Chon, H.D., Agrawal, D., El Abbadi, A.: Storage and retrieval of moving objects. Mobile Data Management, 173–184 (2001)

    Google Scholar 

  10. Jensen, C. (ed.): Special issue on indexing moving objects. Data Engineering Bulletin (2002)

    Google Scholar 

  11. Elbassioni, K., Elmasry, A., Kamel, I.: An efficient indexing scheme for multidimensional moving objects. In: 9th International Conference on Database Theory, Siena, Italy (2003) (to appear)

    Google Scholar 

  12. Fan, L., Almeida, J., Cao, P., Broder, A.: Summary cache: a scalable wide-area web cache sharing protocol. IEEE/ACM Transactions on Networking 8(3), 281–293 (2000)

    Article  Google Scholar 

  13. Gibbons, P., Matias, Y.: New sampling-based summary statistics for improving approximate query answers. In: Proc. of ACM SIGMOD (April 1998)

    Google Scholar 

  14. Gilbert, A.C., Kotidis, Y., Muthukrishnan, S., Strauss, M.: Surfing Wavelets on Streams: One-Pass Summaries for Approximate Aggregate Queries. The VLDB Journal (September 2001)

    Google Scholar 

  15. Ibarra, O., Mokhtar, H., Su, J.: On moving object queries. In: Proc. 21st ACM PODS Symposium on Princeples of Database Systems, Madison, Wisconsin, pp. 188–198 (2002)

    Google Scholar 

  16. Kollios, G., Gunopulos, D., Tsotras, V.: Nearest Neighbor Queries in a Mobile Environment. In: Proc. of the Spatio-Temporal Database Management Workshop, Edinburgh, Scotland, pp. 119–134 (1999)

    Google Scholar 

  17. Kollios, G., Gunopulos, D., Tsotras, V.: On Indexing Mobile Objects. In: Proc. of the 18th ACM Symp. on Principles of Database Systems (PODS), June 1999, pp. 261–272 (1999)

    Google Scholar 

  18. Manku, G.S., Motwani, R.: Approximate Frequency Counts over Data Streams. In: Proc. of 28th VLDB, August 2002, pp. 346–357 (2002)

    Google Scholar 

  19. Chaudhuri, S., Bruno, N., Gravano, L.: Top-k selection queries over relational databases: Mapping strategies and performance evaluation. ACM TODS 27(2) (2002)

    Google Scholar 

  20. Porkaew, K., Lazaridis, I., Mehrotra, S.: Querying mobile objects in spatiotemporal databases. In: Jensen, C.S., Schneider, M., Seeger, B., Tsotras, V.J. (eds.) SSTD 2001. LNCS, vol. 2121, p. 59. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  21. Saltenis, S., Jensen, C.: Indexing of Moving Objects for Location-Based Services. In: Proc. of IEEE ICDE (2002)

    Google Scholar 

  22. Saltenis, S., Jensen, C., Leutenegger, S., Lopez, M.A.: Indexing the Positions of Continuously Moving Objects. In: Proceedings of the ACM SIGMOD, May 2000, pp. 331–342 (2000)

    Google Scholar 

  23. Sistla, A.P., Wolfson, O., Chamberlain, S., Dao, S.: Modeling and Querying Moving Objects. In: Proceedings of the 13th ICDE, Birmingham, U.K, April 1997, pp. 422–432 (1997)

    Google Scholar 

  24. Song, Z., Roussopoulos, N.: K-nearest neighbor search for moving query point. In: Jensen, C.S., Schneider, M., Seeger, B., Tsotras, V.J. (eds.) SSTD 2001. LNCS, vol. 2121, pp. 79–96. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  25. Tao, Y., Papadias, D.: Time-parameterized queries in spatio-temporal databases. In: Proc. of ACM SIGMOD (2002)

    Google Scholar 

  26. Tao, Y., Papadias, D., Shen, Q.: Continuous nearest neighbor search. In: Proc. of VLDB (2002)

    Google Scholar 

  27. Tao, Y., Sun, J., Papadias, D.: Selectivity estimation for predictive spatiotemporal queries. In: Proceedings of 19th IEEE International Conference on Data Engineering, ICDE (2003) (to appear)

    Google Scholar 

  28. Wang, M., Vitter, J.S., Lim, L., Padmanabhan, S.: Wavelet-based cost estimation for spatial queries. In: Jensen, C.S., Schneider, M., Seeger, B., Tsotras, V.J. (eds.) SSTD 2001. LNCS, vol. 2121, pp. 175–196. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  29. Wang, W., Yang, J., Muntz, R.: STING: A statistical information grid approach to spatial data mining. The VLDB Journal, 186–195 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hadjieleftheriou, M., Kollios, G., Gunopulos, D., Tsotras, V.J. (2003). On-Line Discovery of Dense Areas in Spatio-temporal Databases. In: Hadzilacos, T., Manolopoulos, Y., Roddick, J., Theodoridis, Y. (eds) Advances in Spatial and Temporal Databases. SSTD 2003. Lecture Notes in Computer Science, vol 2750. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45072-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45072-6_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40535-1

  • Online ISBN: 978-3-540-45072-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics