Abstract
In this paper we propose a new index structure, called the Bkd-tree, for indexing large multi-dimensional point data sets. The Bkd-tree is an I/O-efficient dynamic data structure based on the kd-tree. We present the results of an extensive experimental study showing that unlike previous attempts on making external versions of the kd-tree dynamic, the Bkd-tree maintains its high space utilization and excellent query and update performance regardless of the number of updates performed on it.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agarwal, P.K., Arge, L., Procopiuc, O., Vitter, J.S.: A framework for index bulk loading and dynamization. In: Proc. Intl. Colloq. Automata, Languages and Programming, pp. 115–127 (2001)
Aggarwal, A., Vitter, J.S.: The Input/Output complexity of sorting and related problems. Commun. ACM 31, 1116–1127 (1988)
Arge, L.: External memory data structures. In: Abello, J., Pardalos, P.M., Resende, M.G.C. (eds.) Handbook of Massive Data Sets, pp. 313–358. Kluwer, Dordrecht (2002)
Arge, L., Procopiuc, O., Vitter, J.S.: Implementing I/O-efficient data structures using TPIE. In: Proc. European Symp. on Algorithms, pp. 88–100 (2002)
Arge, L., Samoladas, V., Vitter, J.S.: On two-dimensional indexability and optimal range search indexing. In: Proc. ACM Symp. Principles of Database Systems, vol. 47, pp. 346–357 (1999)
Beckmann, N., Kriegel, H.-P., Schneider, R., Seeger, B.: The R*-tree: An efficient and robust access method for points and rectangles. In: Proc. SIGMOD Intl. Conf. on Management of Data, pp. 322–331 (1990)
Bentley, J.L.: Multidimensional binary search trees used for associative searching. Commun. ACM 18(9), 509–517 (1975)
Bentley, J.L.: Decomposable searching problems. Inform. Process. Lett. 8, 244–251 (1979)
Berchtold, S., Böhm, C., Kriegel, H.-P.: Improving the query performance of high-dimensional index structures by bulk load operations. In: Schek, H.-J., Saltor, F., Ramos, I., Alonso, G. (eds.) EDBT 1998. LNCS, vol. 1377, pp. 216–230. Springer, Heidelberg (1998)
Evangelidis, G., Lomet, D., Salzberg, B.: The hBΠ-tree: A multi-attribute index supporting concurrency, recovery and node consolidation. The VLDB Journal 6, 1–25 (1997)
Gaede, V., Günther, O.: Multidimensional access methods. ACM Computing Surveys 30(2), 170–231 (1998)
Grossi, R., Italiano, G.F.: Efficient cross-tree for external memory. In: Abello, J., Vitter, J.S. (eds.) External Memory Algorithms and Visualization, pp. 87–106. American Mathematical Society, Providence (1999), Revised version available at ftp://ftp.di.unipi.it/pub/techreports/TR-00-16.ps.Z
Guttman, A.: R-trees: A dynamic index structure for spatial searching. In: Proc. SIGMOD Intl. Conf. on Management of Data, pp. 47–57 (1984)
Jagadish, H.V., Narayan, P.P.S., Seshadri, S., Sudarshan, S., Kanneganti, R.: Incremental organization for data recording and warehousing. In: Proc. Intl. Conf. on Very Large Data Bases, pp. 16–25 (1997)
Kanth, K.V.R., Singh, A.K.: Optimal dynamic range searching in nonreplicating index structures. In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, pp. 257–276. Springer, Heidelberg (1998)
Lee, D.T., Wong, C.K.: Worst-case analysis for region and partial region searches in multidimensional binary search trees and balanced quad trees. Acta Informatica 9, 23–29 (1977)
Lomet, D.: B-tree page size when caching is considered. SIGMOD Record 27(3), 28–32 (1998)
Lomet, D.B., Salzberg, B.: The hB-Tree: A multiattribute indexing method with good guaranteed performance. ACM Trans. on Database Systems 15(4), 625–658 (1990)
Nievergelt, J., Hinterberger, H., Sevcik, K.C.: The grid file: An adaptable, symmetric multikey file structure. ACM Trans. on Database Systems 9(1), 38–71 (1984)
O’Neil, P.E., Cheng, E., Gawlick, D., O’Neil, E.J.: The log-structured mergetree (LSM-tree). Acta Informatica, 33(4):351–385 (1996)
Overmars, M.: The Design of Dynamic Data Structures. LNCS, vol. 156. Springer, Heidelberg (1983)
Robinson, T.: The K-D-B-tree: A search structure for large multidimensional dynamic indexes. In: Proc. SIGMOD Intl. Conf. on Management of Data, pp. 10–18 (1981)
Samet, H.: The design and analysis of spatial data structures. Addison-Wesley, Reading (1990)
Silva Filho, Y.V.: Average case analysis of region search in balanced k-d trees. Inform. Process. Lett. 8, 219–223 (1979)
TIGER/Line Files, 1997 Technical Documentation. U.S. Census Bureau (1998), http://www.census.gov/geo/tiger/TIGER97D.pdf
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Procopiuc, O., Agarwal, P.K., Arge, L., Vitter, J.S. (2003). Bkd-Tree: A Dynamic Scalable kd-Tree. In: Hadzilacos, T., Manolopoulos, Y., Roddick, J., Theodoridis, Y. (eds) Advances in Spatial and Temporal Databases. SSTD 2003. Lecture Notes in Computer Science, vol 2750. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45072-6_4
Download citation
DOI: https://doi.org/10.1007/978-3-540-45072-6_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-40535-1
Online ISBN: 978-3-540-45072-6
eBook Packages: Springer Book Archive