Skip to main content

Semi-matchings for Bipartite Graphs and Load Balancing

  • Conference paper
Algorithms and Data Structures (WADS 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2748))

Included in the following conference series:

Abstract

We consider the problem of fairly matching the left-hand vertices of a bipartite graph to the right-hand vertices. We refer to this problem as the semi-matching problem; it is a relaxation of the known bipartite matching problem. We present a way to evaluate the quality of a given semi-matching and show that, under this measure, an optimal semi-matching balances the load on the right hand vertices with respect to any L p -norm. In particular, when modeling a job assignment system, an optimal semi-matching achieves the minimal makespan and the minimal flow time for the system.

The problem of finding optimal semi-matchings is a special case of certain scheduling problems for which known solutions exist. However, these known solutions are based on general network optimization algorithms, and are not the most efficient way to solve the optimal semi-matching problem. To compute optimal semi-matchings efficiently, we present and analyze two new algorithms. The first algorithm generalizes the Hungarian method for computing maximum bipartite matchings, while the second, more efficient algorithm is based on a new notion of cost-reducing paths. Our experimental results demonstrate that the second algorithm is vastly superior to using known network optimization algorithms to solve the optimal semi-matching problem. Furthermore, this same algorithm can also be used to find maximum bipartite matchings and is shown to be roughly as efficient as the best known algorithms for this goal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Active Directory, http://www.microsoft.com/windowsserver2003/technologies

  2. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and Applications. Prentice Hall, Englewood Cliffs (1993)

    Google Scholar 

  3. Awerbuch, B., Azar, Y., Grove, E., Kao, M.Y., Krishnan, P., Vitter, J.S.: Load Balancing in the Lp Norm. In: Proceedings of FOCS (1995)

    Google Scholar 

  4. Azar, Y.: On-line Load Balancing. In: Fiat, A., Woeginger, G. (eds.) Dagstuhl Seminar 1996. LNCS, ch. 8, vol. 1442. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  5. Azar, Y., Broder, A.Z., Karlin, A.R.: On-line load balancing. Theoretical Computer Science 130(1), 73–84 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  6. Azar, Y., Naor, J., Rom, R.: The Competitiveness of On-line Assignments. In: Proceedings of the ACM-SIAM Symposium on Discrete Algorithms, SODA (1992)

    Google Scholar 

  7. Bruno, J.L., Coffman, E.G., Sethi, R.: Scheduling independent tasks to reduce mean finishing time. Communications of the ACM 17, 382–387 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cherkassky, B.V., Goldberg, A.V., Martin, P., Setubal, J.C., Stolfi, J.: Augment or push: a computational study of bipartite matching and unit-capacity flow algorithms. ACM J. Exp. Algorithmics 3(8) (1998), Source code available at http://www.avglab.com/andrew/soft.html

  9. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. MIT Press (2001)

    Google Scholar 

  10. Goldberg, A., Kennedy, R.: An efficient cost scaling algorithm for the assignment problem. Math. Prog. 71, 153–178 (1995); Source code available at http://www.avglab.com/andrew/soft.html

    MathSciNet  MATH  Google Scholar 

  11. Graham, R.L., Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G.: Optimization and approximation in deterministic sequencing and scheduling: A survey. Ann. Discrete Math 5, 287–326 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  12. Hopcroft, J., Karp, R.: An n 5/2 algorithm for maximum matchings in bipartite graphs. SIAM J. Computing 2, 225–231 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  13. Horn, W.A.: Minimizing average flow time with parallel machines. Operations Research 21, 846–847 (1973)

    Article  MATH  Google Scholar 

  14. Kuhn, H.W.: The Hungarian method for the assignment problem. Naval Res. Logist. Quart. 2, 83–97 (1955)

    Article  MathSciNet  Google Scholar 

  15. Lawler, E.: Combinatorial Optimization: Networks and Matroids. Dover, New York (2001)

    MATH  Google Scholar 

  16. LEDA, http://www.algorithmic-solutions.com/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Harvey, N.J.A., Ladner, R.E., Lovász, L., Tamir, T. (2003). Semi-matchings for Bipartite Graphs and Load Balancing. In: Dehne, F., Sack, JR., Smid, M. (eds) Algorithms and Data Structures. WADS 2003. Lecture Notes in Computer Science, vol 2748. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45078-8_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45078-8_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40545-0

  • Online ISBN: 978-3-540-45078-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics