Abstract
The RoboCup competition has brought back to attention the classification of objects in a controlled illumination environment. We present a very fast classifier to achieve image segmentation. Our methods are based on the machine literature, but adapted to robots equipped with low cost image-capture equipment. We then present new fast methods for object recognition, based on also rapid methods for blob formation. We describe how to extract the skeleton of a polygon and we use this for object recognition.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bandlow, T., Klupsch, M., Hanek, R., Schmitt, T.: Fast image segmentation, object recognition and localization in a robocup scenario. In: Veloso, M.M., Pagello, E., Kitano, H. (eds.) RoboCup 1999. LNCS (LNAI), vol. 1856, pp. 174–185. Springer, Heidelberg (1999)
Bruce, J., Balch, T., Veloso, M.: Fast and inexpensive color image segmentation for interactive robots. In: 2000 IEEE-RSJ Int. Conf. Intelligent Robots and Systems (IROS 2000). Robotics Society of Japan, pp. 2061–2066. IEEE, Los Alamitos (2000)
Cendrowska, W.: PRISM: An algorithm for inducing modular rules. International Journal of Man-Machine Studies 27(4), 349–370 (1987)
David, D.H., Douglas, H., Peucker, T.K.: Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. Canadian Cartographer 10(2), 112–122 (1973)
Duda, R.O., Hart, P.E.: Pattern Classification and Scene Analysis. John Wiley & Sons, NY, USA (1973)
Estivill-Castro, V., Torres-Velazquez, R.: Classical sorting embedded in genetic algorithms for improved permutation search. In: 2001 Congress on Evolutionary Computation CEC 2001, Seoul, Korea, pp. 941–948. IEEE Press, Los Alamitos (2001)
Hanek, R., Schmitt, W., Buck, B., Beetz, M.: Fast image-based object localization in natural scenes. In: Proc. of the IEEE Intl. Conf. on Intelligent Robots and Systems. IEEE/RSJ (2002)
Hane, R.: The contracting curve density algorithm and its application to modelbased image segmentation. In: Proc. Conf. Computer Vision and Pattern Recognition, vol. I, pp. 797–804 (2001)
Ogniewicz, R.L., Kübler, O.: Hierarchic voronoi skeletons. Pattern Recognition 28(3), 343–359 (1995)
Shapiro, L.G., Haralick, R.M.: Structural discriptions and inexact matching. IEEE T. on Pattern Analysis and Machine Intelligence 3(5), 504–519 (1981)
Veloso, M., Lenser, S., Bruce, J., Uther, W., Hock, M.: CMPack-01: CMU’s legged robots soccer team. Report from Participnats if RoboCup, October 16th (2001)
Veloso, M., Uther, W., Fujita, M., Asada, M., Kitano, H.: Playing soccer with legged robots. In: IROS 1998, Intelligent Robots and Systems Conference, Victoria (1998)
Witten, I., Frank, E.: Data Mining — Practical Machine Learning Tools and Technologies with JAVA implementations. Morgan Kaufmann, CA (2000)
A et al. Zell: SNNS stuttgart neural network simulator, user manual, version 4.2
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Estivill-Castro, V., Lovell, N. (2003). Improved Object Recognition – The RoboCup 4-Legged League. In: Liu, J., Cheung, Ym., Yin, H. (eds) Intelligent Data Engineering and Automated Learning. IDEAL 2003. Lecture Notes in Computer Science, vol 2690. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45080-1_163
Download citation
DOI: https://doi.org/10.1007/978-3-540-45080-1_163
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-40550-4
Online ISBN: 978-3-540-45080-1
eBook Packages: Springer Book Archive