Skip to main content

Improved Object Recognition – The RoboCup 4-Legged League

  • Conference paper
Intelligent Data Engineering and Automated Learning (IDEAL 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2690))

  • 1376 Accesses

Abstract

The RoboCup competition has brought back to attention the classification of objects in a controlled illumination environment. We present a very fast classifier to achieve image segmentation. Our methods are based on the machine literature, but adapted to robots equipped with low cost image-capture equipment. We then present new fast methods for object recognition, based on also rapid methods for blob formation. We describe how to extract the skeleton of a polygon and we use this for object recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bandlow, T., Klupsch, M., Hanek, R., Schmitt, T.: Fast image segmentation, object recognition and localization in a robocup scenario. In: Veloso, M.M., Pagello, E., Kitano, H. (eds.) RoboCup 1999. LNCS (LNAI), vol. 1856, pp. 174–185. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  2. Bruce, J., Balch, T., Veloso, M.: Fast and inexpensive color image segmentation for interactive robots. In: 2000 IEEE-RSJ Int. Conf. Intelligent Robots and Systems (IROS 2000). Robotics Society of Japan, pp. 2061–2066. IEEE, Los Alamitos (2000)

    Google Scholar 

  3. Cendrowska, W.: PRISM: An algorithm for inducing modular rules. International Journal of Man-Machine Studies 27(4), 349–370 (1987)

    Article  MATH  Google Scholar 

  4. David, D.H., Douglas, H., Peucker, T.K.: Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. Canadian Cartographer 10(2), 112–122 (1973)

    Google Scholar 

  5. Duda, R.O., Hart, P.E.: Pattern Classification and Scene Analysis. John Wiley & Sons, NY, USA (1973)

    MATH  Google Scholar 

  6. Estivill-Castro, V., Torres-Velazquez, R.: Classical sorting embedded in genetic algorithms for improved permutation search. In: 2001 Congress on Evolutionary Computation CEC 2001, Seoul, Korea, pp. 941–948. IEEE Press, Los Alamitos (2001)

    Google Scholar 

  7. Hanek, R., Schmitt, W., Buck, B., Beetz, M.: Fast image-based object localization in natural scenes. In: Proc. of the IEEE Intl. Conf. on Intelligent Robots and Systems. IEEE/RSJ (2002)

    Google Scholar 

  8. Hane, R.: The contracting curve density algorithm and its application to modelbased image segmentation. In: Proc. Conf. Computer Vision and Pattern Recognition, vol. I, pp. 797–804 (2001)

    Google Scholar 

  9. Ogniewicz, R.L., Kübler, O.: Hierarchic voronoi skeletons. Pattern Recognition 28(3), 343–359 (1995)

    Article  Google Scholar 

  10. Shapiro, L.G., Haralick, R.M.: Structural discriptions and inexact matching. IEEE T. on Pattern Analysis and Machine Intelligence 3(5), 504–519 (1981)

    Article  Google Scholar 

  11. Veloso, M., Lenser, S., Bruce, J., Uther, W., Hock, M.: CMPack-01: CMU’s legged robots soccer team. Report from Participnats if RoboCup, October 16th (2001)

    Google Scholar 

  12. Veloso, M., Uther, W., Fujita, M., Asada, M., Kitano, H.: Playing soccer with legged robots. In: IROS 1998, Intelligent Robots and Systems Conference, Victoria (1998)

    Google Scholar 

  13. Witten, I., Frank, E.: Data Mining — Practical Machine Learning Tools and Technologies with JAVA implementations. Morgan Kaufmann, CA (2000)

    Google Scholar 

  14. A et al. Zell: SNNS stuttgart neural network simulator, user manual, version 4.2

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Estivill-Castro, V., Lovell, N. (2003). Improved Object Recognition – The RoboCup 4-Legged League. In: Liu, J., Cheung, Ym., Yin, H. (eds) Intelligent Data Engineering and Automated Learning. IDEAL 2003. Lecture Notes in Computer Science, vol 2690. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45080-1_163

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45080-1_163

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40550-4

  • Online ISBN: 978-3-540-45080-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics