Skip to main content

Metasearch via Voting

  • Conference paper
Intelligent Data Engineering and Automated Learning (IDEAL 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2690))

  • 1042 Accesses

Abstract

Metasearch engines are developed to overcome the shortcoming of single search engine and try to benefit from cooperative decision by combining the results of multiple independent search engines that make use of different models and configurations. In this work, we study the metasearch problem via voting that facilities multiple agents making cooperative decision. We can deem the source search engines as voters and all ranked documents as candidates, then metaseach problem is actually to find a voting algorithm to obtain group’s preferences on these documents(candidates). In addition to two widely discussed classical voting rules: Borda and Condorcet, we study another two voting algorithms, Black and Kemeny. Since Kemeny ranking problem is NP-hard, a new heuristic algorithm has been proposed for metasearch. Some experiments have been carried out on TREC2001 data for evaluating these metasearch algorithms coming from voting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aslam, J.A.: Mark H. Montague, Models for Metasearch. SIGIR (2001)

    Google Scholar 

  2. Black, D.: The Theory of Committees and Elections. Cambridge University Press, Cambridge (1958)

    MATH  Google Scholar 

  3. Borda, J.C.: Mémoire sur les élections au scrutin. Memoires des l’Académie Royale des Sciences (1781)

    Google Scholar 

  4. de Condorcet, M.: Essai sur l’application de l’analyse à la Probabilité des Decisions Rendues à la pluralité des Voix, Paris (1785)

    Google Scholar 

  5. Dwork, C., Kumar, R., Naor, M., Sivakumar, D.: Rank aggregation methods for the web. WWW 10, 613–622 (2001)

    Google Scholar 

  6. Fox, E.A., Shaw, J.A.: Combination of multiple searches. In: Harman, D.K. (ed.) The Second Text REtrieval Conference(TREC-2), March 1994, pp. 243–249. U.S. Government Printing Office, Washington D.C (1994)

    Google Scholar 

  7. Gravano, L., Chang, C., Garcia-Molina, H., Paepcke, A.: STARTS: Stanford proposal for internet meta-searching, May 1997, 207–218. ACM SIGMOD, Tucson (1997)

    Google Scholar 

  8. Kemeny, J.G.: Mathematics without numbers. Daedalus 88, 577–591 (1959)

    Google Scholar 

  9. Lawrence, S., Giles, C.L.: Inquirus, the NECI meta-search engine. In: WWW7 Conference, Brisbane, Australia, pp. 95–105 (1998)

    Google Scholar 

  10. Selberg, E.W.: Towards Comprehensive Web Search. PhD thesis, University of Washington (1999)

    Google Scholar 

  11. Meng, W., Yu, C.T., Liu, K.-L.: Building efficient and effective metasearch engines. ACM Computing Surveys 34(1), 48–89 (2002)

    Article  Google Scholar 

  12. Montague, M., Aslam, J.A.: Condorcet Fusion for Improved Retrieval. In: CIKM2002, McLean, Virginia, USA, Novemeber 4–9 (2002)

    Google Scholar 

  13. Oztekin, B.U., Karypis, G., Kumar, V.: Expert Agreement and Content Based Reranking in a Meta Search Environment using Mearf. In: WWW 2002, Honolulu, Hawaii, USA, May 7–11 (2002)

    Google Scholar 

  14. Savoy, J., Calvé, A.L., Vrajitoru, D.: Report on the TREC- 5 experiment: Data fusion and collection fusion. In: Voorhees, E.M., Harman, D.K. (eds.) The Fifth Text REtrieval Conference(TREC-5), Gaithersburg, MD, USA, pp. 489–502. U.S. Government Printing Office, Washington D.C (1997)

    Google Scholar 

  15. Selberg, E., Etzioni, O.: The MetaCrawler Architecture for resource aggregation on the web. IEEE Expert 12(1), 8–14 (1997)

    Article  Google Scholar 

  16. Vogt, C.C., ottrell, G.W.: Fusion via a linear combination of scores. Information Retrieval 1(3), 151–173 (1999)

    Article  Google Scholar 

  17. Voorhees, E., Harman, D. (eds.): Proceedings of the Tenth Text REtrieval Conference (TREC 2001), NIST Special Publication, pp. 500–250. (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhu, S., Fang, Q., Deng, X., Zheng, W. (2003). Metasearch via Voting. In: Liu, J., Cheung, Ym., Yin, H. (eds) Intelligent Data Engineering and Automated Learning. IDEAL 2003. Lecture Notes in Computer Science, vol 2690. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45080-1_98

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45080-1_98

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40550-4

  • Online ISBN: 978-3-540-45080-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics