Skip to main content

Object-Based Strategy for Morphometry of the Cerebral Cortex

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2732))

Abstract

Most of the approaches dedicated to automatic morphometry rely on a point-by-point strategy based on warping each brain towards a reference coordinate system. In this paper, we describe an alternative object-based strategy dedicated to the cortex. This strategy relies on an artificial neuroanatomist performing automatic recognition of the main cortical sulci and parcellation of the cortical surface into gyral patches. A set of shape descriptors, which can be compared across subjects, is then attached to the sulcus and gyrus related objects segmented by this process. The framework is used to perform a study of 142 brains of the ICBM database. This study reveals some correlates of handedness on the size of the sulci located in motor areas, which seem to be beyond the scope of the standard voxel based morphometry.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amunts, K., et al.: Interhemispheric asymmetry of the human motor cortex related to handedness and gender. Neuropsychologia 38, 304–312 (2000)

    Article  Google Scholar 

  2. Amunts, K., et al.: Asymmetry in the human motor cortex and handedness. Neuroimage 4, 216–222 (1996)

    Article  Google Scholar 

  3. Ashburner, J., et al.: Computer-assisted imaging to assess brain structure in healthy and diseased brains. The Lancet Neurology 2 (2003)

    Google Scholar 

  4. Ashburner, J., Friston, K.J.: Voxel-based morphometry–the methods. NeuroImage 11, 805–821 (2000)

    Article  Google Scholar 

  5. Biederman, I.: Recognition by components: a theory of human image understanding. Psychological Review 94, 115–147 (1987)

    Article  Google Scholar 

  6. Brett, M., et al.: The problem of functional localization in the human brain. Nat. Rev. Neurosci. 3(3), 243–249 (2002)

    Article  MathSciNet  Google Scholar 

  7. Brodmann, K.: Vergleichende Lokalisationslehre der Grosshirnrinde. Barth, Leipzig (1909)

    Google Scholar 

  8. Cachia, A., et al.: A mean curvature based primal sketch to study the cortical folding process from antenatal to adult brain. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 897–904. Springer, Heidelberg (2001) (to appear in IEEE TMI)

    Chapter  Google Scholar 

  9. Cachia, A., et al.: Gyral parcellation of the cortical surface using geodesic Voronoï diagrams. In: Dohi, T., Kikinis, R. (eds.) MICCAI 2002. LNCS, vol. 2488, pp. 427–434. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  10. Cachier, P., et al.: Multisubject non-rigid registration of brain MRI using intensity and geometric features. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 734–742. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  11. Caunce, A., Taylor, C.J.: Using local geometry to build 3D sulcal models. In: Kuba, A., Sámal, M., Todd-Pokropek, A. (eds.) IPMI 1999. LNCS, vol. 1613, pp. 196–209. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  12. Collins, D.L., et al.: Non-linear cerebral registration with sulcal constraints. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 974–984. Springer, Heidelberg (1998)

    Google Scholar 

  13. Collins, D.L., et al.: Automatic 3D intersubject registration of MR volumetric data in standardized talairach space. J. Comput. Assist. Tomogr. 18(2), 192–205 (1994)

    Article  Google Scholar 

  14. Crivello, F., et al.: Comparison of spatial normalization procedures and their impact on functional maps. Human Brain Mapping 16(4), 228–250 (2002)

    Article  Google Scholar 

  15. Davatzikos, C., Bryan, R.N.: Morphometric analysis of cortical sulci using parametric ribbons: a study of the central sulcus. J. Comput. Assist. Tomogr. 26(2), 298–307 (2002)

    Article  Google Scholar 

  16. Fischl, B., Dale, A.M.: Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc. Natl. Acad. Sci. USA 97(20), 11050–11055 (2000)

    Article  Google Scholar 

  17. Fischl, B., et al.: High-resolution intersubject averaging and a coordinate system for the cortical surface. Hum. Brain Mapp. 8(4), 272–284 (1999)

    Article  Google Scholar 

  18. Fox, P., et al.: A stereotactic method of anatomical localization for PET. J. Comput. Assist. Tomogr. (1985)

    Google Scholar 

  19. Friston, K., et al.: Spatial realignment and normalisation of images. Human Brain Mapping 2, 165–189 (1995)

    Article  Google Scholar 

  20. Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions and the bayesian restoration of images. IEEE Pattern Analysis and Machine Intelligence 6(6), 721–741 (1984)

    Article  MATH  Google Scholar 

  21. Good, C.D., et al.: A voxel-based morphometric study of ageing in 465 normal adult human brains. Neuroimage 14(1), 21–36 (2001)

    Article  Google Scholar 

  22. Hellier, P., et al.: Retrospective evaluation of inter-subject brain registration. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 258–265. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  23. Le Goualher, G., et al.: Modeling cortical sulci using active ribbons. Int. J. Pattern Recognit. Artific. Intell. 11(8), 1295–1315 (1997)

    Article  Google Scholar 

  24. Le Goualher, G., et al.: Automated extraction and variability analysis of sulcal neuroanatomy. IEEE Medical Imaging 18(3), 206–217 (1999)

    Article  Google Scholar 

  25. Lohmann, G., von Cramon, D.Y.: Automatic labelling of the human cortical surface using sulcal basins. Medical Image analysis 4(3), 179–188 (2000)

    Article  Google Scholar 

  26. Mac Donald, D., et al.: Automated 3-D extraction of inner and outer surfaces of cerebral cortex from MRI. Neuroimage 12(3), 340–356 (2000)

    Article  MathSciNet  Google Scholar 

  27. Mangin, J.-F., et al.: From 3D magnetic resonance images to structural representations of the cortex topography using topology preserving deformations. Journal of Mathematical Imaging and Vision 5(4), 297–318 (1995)

    Article  MathSciNet  Google Scholar 

  28. Mazziotta, J., et al.: Aprobabilistic atlas and reference system for the human brain: International consortium for brain mapping (ICBM). Philos. Trans. R. Soc. Lond. B. Biol. Sci. 356(1412), 1293–1322 (2001)

    Article  Google Scholar 

  29. Ono, M., et al.: Atlas of the cerebral sulci. Thieme Verlag (1990)

    Google Scholar 

  30. Régis, J., et al.: Generic model for the localization of the cerebral cortex and preoperative multimodal integration in epilepsy surgery. Stereo. Funct. Neurosurgery 65, 72–80 (1995)

    Article  Google Scholar 

  31. Rettmann, M.E., et al.: Automated sulcal segmentation usingwatersheds on the cortical surface. NeuroImage 15(2), 329–344 (2002)

    Article  Google Scholar 

  32. Riesenhuber, M., Poggio, T.: Neural mechanisms of object recognition. Current Opinion in Neurobiology 12, 162–168 (2002)

    Article  Google Scholar 

  33. Rivière, D., et al.: Automatic recognition of cortical sulci of the human brain using a congregation of neural networks. Med. Image Anal. 6(2), 77–92 (2002)

    Article  Google Scholar 

  34. Royackkers, N., et al.: Detection and statistical analysis of human cortical sulci. NeuroImage 10, 625–641 (1999)

    Article  Google Scholar 

  35. Talairach, J., et al.: Atlas d’Anatomie Stéréotaxique du Télencéphale. Masson, Paris (1967)

    Google Scholar 

  36. Thompson, P., Toga, A.W.: A surface-based technique for warping three-dimensional images of the brain. IEEE Medical Imaging 15, 402–417 (1996)

    Article  Google Scholar 

  37. Thompson, P.M., et al.: Mathematical / computational challenges in creating deformable and probabilistic atlases of the human brain. Hum. Brain Mapp. 9(2), 81–92 (2000)

    Article  Google Scholar 

  38. Toga, A.W., Thompson, P.M.: New approaches in brain morphometry. Am. J. Geriatr. Psychiatry 10(1), 13–23 (2002)

    Google Scholar 

  39. Toga, A.W., Thompson, P.M.: Mapping brain asymmetry. Nature Neuroscience Reviews 4(1), 37–48 (2003)

    Article  Google Scholar 

  40. Ullman, S., et al.: Visual features of intermediate complexity and their use in classification. Nature Neuroscience 5(7), 682–687 (2002)

    Google Scholar 

  41. Vaillant, M., Davatzikos, C.: Finding parametric representations of the cortical sulci using active contour model. Medical Image Analysis 1(4), 295–315 (1997)

    Article  Google Scholar 

  42. Van Essen, D.C.: A tension-based theory of morphogenesis and compact wiring in the central nervous system. Nature 385, 313–318 (1997)

    Article  Google Scholar 

  43. Van Essen, D.C., et al.: Functional and structural mapping of human cerebral cortex: solutions are in the surfaces. Proc. Natl. Acad. Sci. USA 95(3), 788–795 (1998)

    Article  Google Scholar 

  44. Watkins, K.E., et al.: Structural asymmetries in the human brain: a voxel-based statistical analysis of 142 mri scans. Cereb. Cortex 11(9), 868–877 (2001)

    Article  Google Scholar 

  45. Welker, W.: Cerebral Cortex. In: Why does cerebral cortex fissure and fold?, vol. 8B, pp. 3–135. Plenum Press, New York (1988)

    Google Scholar 

  46. White, L.E., et al.: Structure of the human sensorimotor system. ii: Lateral symmetry. Cerebral Cortex 7, 31–47 (1997)

    Article  Google Scholar 

  47. White, L.E., et al.: Cerebral asymmetry and handedness. Nature 368, 197–198 (1994)

    Article  Google Scholar 

  48. Worsley, K.: The geometry of random images. Chance 9(1), 27–40 (1996)

    Google Scholar 

  49. Zeng, X., et al.: A new approach to 3D sulcal ribbon finding from MR images. In: Taylor, C., Colchester, A. (eds.) MICCAI 1999. LNCS, vol. 1679, pp. 148–157. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mangin, J.F. et al. (2003). Object-Based Strategy for Morphometry of the Cerebral Cortex. In: Taylor, C., Noble, J.A. (eds) Information Processing in Medical Imaging. IPMI 2003. Lecture Notes in Computer Science, vol 2732. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45087-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45087-0_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40560-3

  • Online ISBN: 978-3-540-45087-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics