Skip to main content

Learning Object Correspondences with the Observed Transport Shape Measure

  • Conference paper
Information Processing in Medical Imaging (IPMI 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2732))

Abstract

We propose a learning method which introduces explicit knowledge to the object correspondence problem. Our approach uses an a priori learning set to compute a dense correspondence field between two objects, where the characteristics of the field bear close resemblance to those in the learning set. We introduce a new local shape measure we call the “observed transport measure”, whose properties make it particularly amenable to the matching problem. From the values of our measure obtained at every point of the objects to be matched, we compute a distance matrix which embeds the correspondence problem in a highly expressive and redundant construct and facilitates its manipulation. We present two learning strategies that rely on the distance matrix and discuss their applications to the matching of a variety of 1-D, 2-D and 3-D objects, including the corpus callosum and ventricular surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Pitiot, A., Toga, A., Thompson, P.: Elastic segmentation of brain MRI via shape model guided evolutionary programming. IEEE Trans. on Medical Imaging 21, 910–923 (2002)

    Article  Google Scholar 

  2. Cootes, T.F., Hill, A., Taylor, C.J., Haslam, J.: Use of Active Shape Models for Locating Structures in Medical Images. Image and Vision Computing 12, 355–366 (1994)

    Article  Google Scholar 

  3. Kanai, T., Suzuki, H., Kimura, F.: Metamorphosis of Arbitrary Triangular Meshes. IEEE Computer Graphics and Applications 20, 62–75 (2000)

    Article  Google Scholar 

  4. Trouvé, A., Younes, L.: Diffeomorphic Matching Problems in One Dimension: Designing and Minimizing Matching Functionals. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1842, pp. 573–587. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  5. Cohen, I., Ayache, N., Sulget, P.: Tracking Points on Deformable Objects using Curvature Information. In: Sandini, G. (ed.) ECCV 1992. LNCS, vol. 588, pp. 458–466. Springer, Heidelberg (1992)

    Google Scholar 

  6. Fleuté, M., Lavallée, S., Julliard, R.: Incorporating a Statistically Based Shape Model into a System for Computer-Assisted Anterior Cruciate Ligament Surgery. Medical Image Analysis 3, 209–222 (1999)

    Article  Google Scholar 

  7. Wang, Y., Peterson, B., Staib, L.: Shape-Based 3D Surface Correspondence using Geodesics and Local Geometry. In: Proc. of CVPR, pp. 644–651 (2000)

    Google Scholar 

  8. Kelemen, A., Szekely, G., Gerig, G.: Three-Dimensional Model-based Segmentation of Brain MRI. IEEE Trans. on Medical Imaging 18, 838–849 (1999)

    Article  Google Scholar 

  9. Sebastian, T., Crisco, J., Klein, P., Kimia, B.: Constructing 2D Curve Atlases. In: Proc. of CVPR, pp. 70–77 (2000)

    Google Scholar 

  10. Thompson, P., Toga, A.: Detection, Visualisation and Animation of Abnormal Anatomic Structure with a Deformable Probabilistic Brain Atlas Based on Random Vector Field Transformations. Medical Image Analysis 1, 271–294 (1997)

    Article  Google Scholar 

  11. Davatzikos, C., Prince, J., Bryan, N.: Image Registration Based on Boundary Mapping. IEEE Trans. on Medical Imaging 15, 212–215 (1996)

    Google Scholar 

  12. Davies, R., Twining, C., Cootes, T., Waterton, J., Taylor, C.: A Minimum Description Length Approach to Statistical Shape Modelling. IEEE Trans. on Medical Imaging 21 (2002)

    Google Scholar 

  13. Haker, S., Angenent, S., Tannenbaum, A.: Minimizing Flows for the Monge-Kantorovich Problem. SIAM Journal of Mathematical Analysis (2003) (to appear)

    Google Scholar 

  14. Belongie, S., Jitendra, M., Puzicha, J.: Shape Matching and Object Recognition Using Shape Contexts. IEEE Trans. on PAMI 24, 509–522 (2002)

    Google Scholar 

  15. Huot, E., Yahia, H., Cohen, I., Herlin, I.: Surface Matching with Large Deformations and Arbitrary Topology: A Geodesic Distance Evolution Scheme on a 3-Manifold. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1842, pp. 769–783. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  16. Cachier, P., Bardinet, E., Dormont, D., Pennec, X., Ayache, N.: Iconic Feature Based Nonrigid Registration: The PASHA Algorithm. CVIU — Special Issue on Nonrigid Registration (2003) (in press)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pitiot, A., Delingette, H., Toga, A.W., Thompson, P.M. (2003). Learning Object Correspondences with the Observed Transport Shape Measure. In: Taylor, C., Noble, J.A. (eds) Information Processing in Medical Imaging. IPMI 2003. Lecture Notes in Computer Science, vol 2732. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45087-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45087-0_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40560-3

  • Online ISBN: 978-3-540-45087-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics