Skip to main content

Non-rigid Image Registration Using a Statistical Spline Deformation Model

  • Conference paper
Information Processing in Medical Imaging (IPMI 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2732))

Abstract

We propose a statistical spline deformation model (SSDM) as a method to solve non-rigid image registration. Within this model, the deformation is expressed using a statistically trained B-spline deformation mesh. The model is trained by principal component analysis of a training set. This approach allows to reduce the number of degrees of freedom needed for non-rigid registration by only retaining the most significant modes of variation observed in the training set.

User-defined transformation components, like affine modes, are merged with the principal components into a unified framework. Optimization proceeds along the transformation components rather then along the individual spline coefficients.

The concept of SSDM’s is applied to the temporal registration of thorax CR-images using pattern intensity as the registration measure. Our results show that, using 30 training pairs, a reduction of 33% is possible in the number of degrees of freedom without deterioration of the result. The same accuracy as without SSDM’s is still achieved after a reduction up to 66% of the degrees of freedom.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L.G., Leach, M.O., Hawkes, D.J.: Nonrigid registration using free-form deformations: Application to breast MR images. IEEE Trans. Med. Imag. 18, 712–721 (1999)

    Article  Google Scholar 

  2. Meyer, C., Boes, J., Kim, B., Bland, P., Wahl, R., Zasadny, K., Kison, P., Koral, K., Frey, K.: Demonstration of accuracy and clinical versatility of mutual information for automatic multimodality image fusion using affine and thin plate spline warped geometric deformations. Medical Image Analysis 1, 195–206 (1997)

    Article  Google Scholar 

  3. Gee, J.C., Bajcsy, R.K.: Elastic matching: Continuum mechanical and probabilistic analysis. In: Toga, A.W. (ed.) Brain Warping, Academic Press, San Diego (1999)

    Google Scholar 

  4. Christensen, G., Rabbitt, R., Miller, M.: Deformable templates using large deformation kinetics. IEEE Transactions on Image Processing 5, 1435–1447 (1996)

    Article  Google Scholar 

  5. Ferrant, M., Warfield, S., Nabavi, A., Jolesz, F., Kikinis, R.: Registration of 3D interoperative MR images of the brain using a finite element biomechanical model. In: Delp, S.L., DiGoia, A.M., Jaramaz, B. (eds.) MICCAI 2000. LNCS, vol. 1935, pp. 19–28. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  6. Rueckert, D., Frangi, A., Schnabel, J.: Automatic construction of 3D statistical deformation models using non-rigid registration. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 77–94. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  7. Weese, J., Buzug, T.M., Lorenz, C., Fassnacht, C.: An approach to 2D/3D registration of a vertebra in 2D X-ray fluoroscopies with 3D CT images. In: Troccaz, J., Mösges, R., Grimson, W.E.L. (eds.) CVRMed-MRCAS 1997, CVRMed 1997, and MRCAS 1997. LNCS, vol. 1205, pp. 119–128. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  8. MATLAB. Version 6.5.0.180913a (R13) (2002)

    Google Scholar 

  9. van Ginneken, B., Frangi, A., Staal, J., ter Haar Romeny, B., Viergever, M.: Automatic detection of abnormalities in chest radiographs using local texture analysis. PhD thesis, Universiteit Utrecht (2001)

    Google Scholar 

  10. Ingber, L.: Very fast simulated annealing. Mathematical and Computer Modelling 12, 967–973 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  11. Unser, M., Aldroubi, A., Eden, M.: B-spline signal processing: Part I—theory. IEEE Trans. Signal Processing 41, 821–832 (1993)

    Article  MATH  Google Scholar 

  12. Unser, M., Aldroubi, A., Eden, M.: B-spline signal processing: Part II—efficient design and applications. IEEE Trans. Signal Processing 41, 834–848 (1993)

    Article  MATH  Google Scholar 

  13. Unser, M.: Splines: A perfect fit for signal and image processing. IEEE Signal Processing Mag 16, 22–38 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Loeckx, D., Maes, F., Vandermeulen, D., Suetens, P. (2003). Non-rigid Image Registration Using a Statistical Spline Deformation Model. In: Taylor, C., Noble, J.A. (eds) Information Processing in Medical Imaging. IPMI 2003. Lecture Notes in Computer Science, vol 2732. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45087-0_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45087-0_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40560-3

  • Online ISBN: 978-3-540-45087-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics