Skip to main content

Estimation of the Hemodynamic Response Function in Event-Related Functional MRI: Directed Acyclic Graphs for a General Bayesian Inference Framework

  • Conference paper
Information Processing in Medical Imaging (IPMI 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2732))

  • 2335 Accesses

Abstract

A convenient way to analyze BOLD fMRI data consists of modeling the whole brain as a stationary, linear system characterized by its transfer function: the Hemodynamic Response Function (HRF). HRF estimation, though of the greatest interest, is still under investigation, for the problem is ill-conditioned. In this paper, we recall the most general Bayesian model for HRF estimation and show how it can beneficially be translated in terms of graphical models, leading to (i) a clear and efficient representation of all structural and functional relationships entailed by the model, and (ii) a straightforward numerical scheme to approximate the joint posterior distribution, allowing for estimation of the HRF, as well as all other model parameters. We finally apply this novel technique on both simulations and real data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Li, T.Q., Haefelin, T.N., Chan, B., Kastrup, A., Jonsson, T., Gbver, G.B., Moseley, M.E.: Assessment of hemodynamic response during focal neural activity in human using bolus tracking, arterial spin labeling and BOLD techniques. Neuroimage 12, 442–451 (2000)

    Article  Google Scholar 

  2. Aubert, A., Costalat, R.: A model of the coupling between brain electrical activity, metabolism, and hemodynamics: application to the interpretation of functional neuroimaging. Neuroimage 17, 1162–1181 (2002)

    Article  Google Scholar 

  3. Friston, K.J., Jezzard, P., Turner, R.: Analysis of functional MRI time-series. Hum. Brain Mapp. 1, 153–171 (1994)

    Article  Google Scholar 

  4. Dale, A.M., Buckner, R.L.: Selective averaging of rapidly presented individual trials usin fMRI. Hum. Brain Mapp. 5, 329–340 (1997)

    Article  Google Scholar 

  5. Buckner, R.L.: Event-related fMRI and the hemodynamic response. Hum. Brain Mapp. 6, 373–377 (1998)

    Article  Google Scholar 

  6. Buckner, R.L., Koutstaal, W., Schacter, D.L., Wagner, A.D.: Functional-anatomic study of episodic retrieval using fMRI (I). Neuroimage 7, 151–162 (1998)

    Article  Google Scholar 

  7. Buckner, R.L., Koutstaal, W., Schacter, D.L., Dale, A.M., Rotte, M., Rosen, B.R.: Functional-anatomic study of episodic retrieval using fMRI (II). Neuroimage 7, 163–175 (1998)

    Article  Google Scholar 

  8. Aguirre, G.K., Zarahn, E., D’Esposito, M.: The variability of human BOLD hemodynamic responses. Neuroimage 7, S574 (1998)

    Google Scholar 

  9. Kershaw, J., Abe, S., Kashikura, K., Zhang, X., Kanno, I.: A Bayesian approach to estimatmg the haemodynamic response function in event-related fMRI. Neuroimage 11, S474 (2000)

    Article  Google Scholar 

  10. Burock, M.A., Dale, A.M.: Estimation and detection of event-related fMRI signals with temporally correlated noise: a statisticaly efficient and unbiased approach. Hum. Brain Mapp. 11, 249–260 (2000)

    Article  Google Scholar 

  11. Goutte, C., Nielsen, F.Å., Hansen, L.K.: Modeling the haemodynamic response in fMRI using smooth FIR filters. IEEE Trans. Med. Imaging 19, 1188–1201 (2000)

    Article  Google Scholar 

  12. Marrelec, G., Benali, H., Ciuciu, P., Poline, J.B.: Bayesian estimation of the hemodynamic response function in functional MRI. In: Fry, R. (ed.) Bayesian Inference and Maximum Entropy Methods in Science and Engineering: 21st International Workshop, AIP, Melvilie, pp. 229–247 (2001)

    Google Scholar 

  13. Marrelec, G., Benali, H., Ciuciu, P., Pélégrini-Issac, M., Poline, J.B.: Robust Bayesian estimation of the hemodynamic response function in event-related BOLD fMRI using basic physiological information. Hum. Brain Mapp. 19, 1–17 (2003)

    Article  Google Scholar 

  14. Ciuciu, P., Marrelec, G., Idier, J., Benali, H., Poline, J.B.: A general tool to estimate the hemodynamic response function in fMRI data. In: Proceedings of the 8th International Conference on Functional Mapping of the Human Brain (2002), Available on CD-ROM

    Google Scholar 

  15. Ciuciu, P., Marrelec, G., Poline, J.B., Idier, J., Benali, H.: Robust estimation of the hemodynamic response function in asynchronous multitasks multisessions eventrelated fMRI paradigms. In: 2002 IEEE International Symposium on Biomedical Imaging Proceedings, pp. 847–850. IEEE, Los Alamitos (2002)

    Chapter  Google Scholar 

  16. Ciuciu, P., Poline, J.B., Marrelec, G., Idier, J., Pallier, C., Benali, H.: Unsupervised robust non-parametric estimation of the hemodynamic response function for any fMRI experiment. IEEE Trans. Med. Imaging (2002) (accepted)

    Google Scholar 

  17. Pearl: Causality: Models, Reasoning, and Inference. Cambridge University Press, Cambridge (2001)

    Google Scholar 

  18. Pearl, J.: Evidential reasoning using stochastic simulation of causal models. Artif. Intell. 32, 245–257 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  19. Gelman, A., Carlin, J.B., Stern, H.S., Rubin, D.B.: Bayesian Data Analysis. Texts in Statistical Science. Chapman & Hall, London (1998)

    MATH  Google Scholar 

  20. Marrelec, G., Benali, H.: Automated rejection sampling from product of distributions. Comput. Stat. (2004) (in press)

    Google Scholar 

  21. Gössl, C., Auer, D., Fahrmeir, L.: Bayesian spatiotemporal inference in functional magnetic resonance imaging. Biometrics 57, 554–562 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. Jensen, C.S., Kong, A., Kjærulff, U.: Blocking Gibbs sampling in very large probabilistic expert systems. International Journal of Human Computer Studies. Special Issue on Real-World Applications of Uncertain Reasoning 42, 647–666 (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Marrelec, G., Ciuciu, P., Pélégrini-Issac, M., Benali, H. (2003). Estimation of the Hemodynamic Response Function in Event-Related Functional MRI: Directed Acyclic Graphs for a General Bayesian Inference Framework. In: Taylor, C., Noble, J.A. (eds) Information Processing in Medical Imaging. IPMI 2003. Lecture Notes in Computer Science, vol 2732. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45087-0_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45087-0_53

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40560-3

  • Online ISBN: 978-3-540-45087-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics