Abstract
Clustering can be defined as the process of partitioning a set of patterns into disjoint and homogeneous meaningful groups (clusters). There is a growing need for parallel algorithms in this field since databases of huge size are common nowadays. This paper presents a parallel version of a recently proposed algorithm that has the ability to scale very well in parallel environments.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aldenderfer, M.S., Blashfield, R.K.: Cluster Analysis. In: Series: Quantitative Applications in the Social Sciences. SAGE Publications, London (1984)
Alevizos, P.: An Algorithm for Orthogonal Range Search in d ≥ 3 dimensions. In: Proceedings of the 14th European Workshop on Computational Geometry, Barcelona (1998)
Alevizos, P., Boutsinas, B., Tasoulis, D., Vrahatis, M.N.: Improving the Orthogonal Range Search k-windows clustering algorithm. In: Proceedings of the 14th IEEE International Conference on Tools with Artificial Intelligence, Washigton D.C., pp. 239–245 (2002)
Bentley, J.L., Maurer, H.A.: Efficient Worst-Case Data Structures for Range Searching. Acta Informatica 13, 1551–1568 (1980)
Chazelle, B.: Filtering Search: A new approach to query-answering. SIAM J. Comput. 15(3), 703–724 (1986)
Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P.: Advances in Knowledge Discovery and Data Mining. MIT Press, Cambridge (1996)
Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R., Sunderam, V.: PVM: Parallel Virtual Machine. A User’s Guide and Tutorial for Networked Parallel Computing. MIT Press, Cambridge (1994)
Chazelle, B., Guibas, L.J.: Fractional Cascading: II. Applications. Algorithmica 1, 163–191 (1986)
Judd, D., McKinley, P., Jain, A.: Large-Scale Parallel Data Clustering. In: Proceedings of the Int. Conf. on Pattern Recognition (1996)
Judd, D., McKinley, P., Jain, A.: Performance Evaluation on Large-Scale Parallel Clustering in NOW Environments. In: Proceedings of the Eight SIAM Conf. on Parallel Processing for Scientific Computing, Minneapolis (March 1997)
MPI The Message Passing Interface standard, http://www-unix.mcs.anl.gov/mpi/
Olson, C.F.: Parallel Algorithms for Hierarchical Clustering. Parallel Computing 21, 1313–1325 (1995)
Preparata, F., Shamos, M.: Computational Geometry. Springer, Heidelberg (1985)
Potts, J.T.: Seeking Parallelism in Discovery Programs, Master Thesis, University of Texas at Arlington (1996)
Ramasubramanian, V., Paliwal, K.: Fast k-dimensional Tree Algorithms for Nearest Neighbor Search with Application to Vector Quantization Encoding. IEEE Transactions on Signal Processing 40(3), 518–531 (1992)
Stoffel, K., Belkoniene, A.: Parallel K-Means Clustering for Large Data Sets. In: Amestoy, P.R., Berger, P., Daydé, M., Duff, I.S., Frayssé, V., Giraud, L., Ruiz, D. (eds.) Euro-Par 1999. LNCS, vol. 1685, pp. 1451–1454. Springer, Heidelberg (1999)
Vrahatis, M.N., Boutsinas, B., Alevizos, P., Pavlides, G.: The New k-windows Algorithm for Improving the k-means Clustering Algorithm. Journal of Complexity 18, 375–391 (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Tasoulis, D.K., Alevizos, P.D., Boutsinas, B., Vrahatis, M.N. (2003). Parallel Unsupervised k-Windows: An Efficient Parallel Clustering Algorithm. In: Malyshkin, V.E. (eds) Parallel Computing Technologies. PaCT 2003. Lecture Notes in Computer Science, vol 2763. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45145-7_32
Download citation
DOI: https://doi.org/10.1007/978-3-540-45145-7_32
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-40673-0
Online ISBN: 978-3-540-45145-7
eBook Packages: Springer Book Archive