Abstract
This work presents the application of incremental symbolic learning strategies for the automatic induction of classification and interpretation rules in the cultural heritage domain. Specifically, such experience was carried out in the environment of the EU project COLLATE, in whose architecture the incremental learning system INTHELEX is used as a learning component. Results are reported, proving that the system was able to learn highly reliable rules for such a complex task.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Becker, J.M.: Inductive learning of decision rules with exceptions: Methodology and experimentation. B.s. diss., Dept. of Computer Science, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA (1985), UIUCDCS-F-85-945
Brocks, H., Thiel, U., Stein, A., Dirsch-Weigand, A.: Customizable retrieval functions based on user tasks in the cultural heritage domain. In: Constantopoulos, P., Sølvberg, I.T. (eds.) ECDL 2001. LNCS, vol. 2163, pp. 37–48. Springer, Heidelberg (2001)
Esposito, F., Malerba, D., Lisi, F.A.: Machine learning for intelligent processing of printed documents. Journal of Intelligent Information Systems 14(2/3), 175–198 (2000)
Esposito, F., Malerba, D., Semeraro, G., Fanizzi, N., Ferilli, S.: Adding machine learning and knowledge intensive techniques to a digital library service. International Journal on Digital Libraries 2(1), 3–19 (1998)
Esposito, F., Semeraro, G., Fanizzi, N., Ferilli, S.: Multistrategy Theory Revision: Induction and abduction in INTHELEX. Machine Learning Journal 38(1/2), 133–156 (2000)
Ferilli, S.: A Framework for Incremental Synthesis of Logic Theories: An Application to Document Processing. Ph.D. thesis, Dipartimento di Informatica, Universitá di Bari, Bari, Italy (November 2000)
Kouzes, R.T., Myers, J.D., Wulf, W.A.: Collaboratories: Doing science on the internet. IEEE Computer 29(8), 40–46 (1996)
Michalski, R.S.: Inferential theory of learning. developing foundations for multistrategy learning. In: Michalski, R.S., Tecuci, G. (eds.) Machine Learning. A Multistrategy Approach, vol. IV, pp. 3–61. Morgan Kaufmann, San Mateo (1994)
Semeraro, G., Ferilli, S., Fanizzi, N., Esposito, F.: Document classification and interpretation through the inference of logic-based models. In: Constantopoulos, P., Sølvberg, I.T. (eds.) ECDL 2001. LNCS, vol. 2163, pp. 59–70. Springer, Heidelberg (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ferilli, S., Esposito, F., Basile, T.M.A., Di Mauro, N. (2003). Automatic Induction of Rules for Classification and Interpretation of Cultural Heritage Material. In: Koch, T., Sølvberg, I.T. (eds) Research and Advanced Technology for Digital Libraries. ECDL 2003. Lecture Notes in Computer Science, vol 2769. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45175-4_15
Download citation
DOI: https://doi.org/10.1007/978-3-540-45175-4_15
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-40726-3
Online ISBN: 978-3-540-45175-4
eBook Packages: Springer Book Archive