Skip to main content

Area and Moment Computation for Objects with a Closed Spline Boundary

  • Conference paper
Computer Analysis of Images and Patterns (CAIP 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2756))

Included in the following conference series:

Abstract

We propose an approach for computation of area and geometric moments for a 2D object with a spline curve boundary. The explicit formulae are obtained for area and low order moment calculation. The formulae use the advantage that the sequence of spline control points is cyclic. It allows us to reduce substantially the number of summands in them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Mukundan, R., Ramakrishnan, K.: Moment Functions in Image Analysis: Theory and Applications. World Scientific, Singapore (1998)

    MATH  Google Scholar 

  2. Reiss, T.H.: Recognizing Planar Objects Using Invariant Image Features. LNCS, vol. 676. Springer, Heidelberg (1993)

    Book  MATH  Google Scholar 

  3. Singer, M.: A general approach to moment calculation for polygons and line segments. Pattern Recognition 26, 1019–1028 (1993)

    Article  MathSciNet  Google Scholar 

  4. Sheynin, S., Tuzikov, A.: Explicit formulae for polyhedra moments. Pattern Recognition Letters 22, 1103–1109 (2001)

    Article  MATH  Google Scholar 

  5. Elder, G.: Linearizing the area and volume constraints. Technical Report CIS 2000-04, Computer Science Department, Technion (2000)

    Google Scholar 

  6. Gonzalez-Ochoa, C., McCamnon, S., Peters, J.: Computing moments of objects enclosed by piecewise polynomial surfaces. ACM Transactions on Graphics 17, 143–157 (1998)

    Article  Google Scholar 

  7. Jacob, M., Blu, T., Unser, M.: An exact method for computing the area moment of wavelet and spline curves. IEEE Transactions on Pattern Analysis and Machine Intelligence 23, 633–642 (2001)

    Article  Google Scholar 

  8. Soldea, O., Elber, G., Rivlin, E.: Exact and efficient computation of moments of free-form surface and trivariate based geometry. Computer-Aided Design 34, 529–539 (2002)

    Article  MATH  Google Scholar 

  9. Ueda, K.: Signed area of sectors between spline curves and the origin. In: 1999 IEEE International Conference on Information Visualization, London, UK, pp. 309–314 (1999)

    Google Scholar 

  10. Hearn, D., Baker, M.: Computer Graphics. Prentice-Hall International, Englewood Cliffs (1986)

    Google Scholar 

  11. Watt, A.: 3D Computer Graphics. Addison-Wesley, Reading (1993)

    Google Scholar 

  12. Catmull, E., Rom, R.: A class of local interpolating splines. In: Barnhill, R., Risenfeld, R. (eds.) Computer Aided Geometric Design, pp. 317–326. Academic Press, San Francisco (1974)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sheynin, S., Tuzikov, A. (2003). Area and Moment Computation for Objects with a Closed Spline Boundary. In: Petkov, N., Westenberg, M.A. (eds) Computer Analysis of Images and Patterns. CAIP 2003. Lecture Notes in Computer Science, vol 2756. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45179-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45179-2_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40730-0

  • Online ISBN: 978-3-540-45179-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics