Skip to main content

Font Classification Using NMF

  • Conference paper
Computer Analysis of Images and Patterns (CAIP 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2756))

Included in the following conference series:

  • 1488 Accesses

Abstract

In this paper, we propose a font classification method in scanned documents using non-negative matrix factorization (NMF). Using NMF, we automatically extract spatially local features enough to classify each font. The appropriateness of the features to classify a specific font is shown in the experimental results. The proposed method is expected to increase the performance of optical character recognition (OCR), document indexing and retrieval systems if such systems use a font classifier as a preprocessor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Nagy, G.: Twenty Years of Document Image Analysis in PAMI. IEEE Trans. Pattern Analysis and Machine Intelligence 22(1), 38–62 (2000)

    Article  Google Scholar 

  2. Khoubyari, S., Hull, J.J.: Font and function word identification in document recognition. Computer Vision and Image Understanding 63(1), 66–74 (1996)

    Article  Google Scholar 

  3. Shi, H., Pavlidis, T.: Font Recognition and Contextual Processing for More Accurate Text Recognition. In: ICDAR 1997, Ulm, Germany, August 1997, pp. 39–44 (1997)

    Google Scholar 

  4. Zramdini, A., Ingold, R.: Optical Font Recognition Using Typographical Features. IEEE Trans. Pattern Anal. Machine Intell. 20(8), 877–882 (1998)

    Article  Google Scholar 

  5. Zhu, Y., Tan, T., Wang, Y.: Font Recognition Based on Global Texture Analysis. Trans. On Pattern Analysis and Machine Intelligence 23(10), 1192–1200 (2001)

    Article  Google Scholar 

  6. Lee, D.D., Seung, H.S.: Learning the Parts of Objects by Non-Negative Matrix Factorization. Nature 401, 788–791 (1999)

    Article  Google Scholar 

  7. Seung, H.S.: Derivation of the objective function (Eq.2) (1999), http://jounalclub.mit.edu

  8. Lee, D.D., Seung, H.S.: Algorithms for non-negative matrix factorization. In: Advances in Neural Information Processing Systems, vol. 13, pp. 556–562 (2001)

    Google Scholar 

  9. Bae, J.H., Jung, K., Kim, J.W., Kim, H.J.: Segmentation of Touching Characters Using an MLP. Pattern Recognition Letters 19(8), 701–709 (1998)

    Article  MATH  Google Scholar 

  10. Jung, K.: Neural network-based Text Location in Color Images. Pattern Recognition Letters 22(14), 1503–1515 (2001)

    Article  MATH  Google Scholar 

  11. Bansal, V., Sinha, R.M.K.: Segmentation of touching and fused Devanagari characters. Pattern Recognition 35(4), 875–893 (2002)

    Article  MATH  Google Scholar 

  12. Lu, Y.: Machine printed character segmentation–an overview. Pattern Recognition 28(1), 67–80 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lee, C.W., Kang, H., Jung, K., Kim, H.J. (2003). Font Classification Using NMF. In: Petkov, N., Westenberg, M.A. (eds) Computer Analysis of Images and Patterns. CAIP 2003. Lecture Notes in Computer Science, vol 2756. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45179-2_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45179-2_58

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40730-0

  • Online ISBN: 978-3-540-45179-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics