Skip to main content

Simple Points in 2D and 3D Binary Images

  • Conference paper
Computer Analysis of Images and Patterns (CAIP 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2756))

Included in the following conference series:

  • 1534 Accesses

Abstract

The notion of a simple point is of fundamental importance for deformations of digital images. A point (pixel or voxel) is simple if the change of its value does not change the topology of the image. This article unifies characterizations of simple points. It shows equivalences of characterizations based on different models that are useful for the design of deformation algorithms (thinning and magnification). The paper also specifies an algorithm for identifying simple voxels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bertrand, G., Maladain, G.: A new characterization of three-dimensional simple points. Pattern Recognition Letters 15, 169–175 (1994)

    Article  MATH  Google Scholar 

  2. Hall, R.W.: Parallel connectivity-preserving thinning algorithms. In: Kong, T.Y., Rosenfeld, A. (eds.) Topological algorithms for Digital Image Processing, pp. 145–179. North-Holland, Amsterdam (1996)

    Chapter  Google Scholar 

  3. Gau, C.J., Kong, T.Y.: 4D Minimal Non-simple Sets. In: Braquelaire, A., Lachaud, J.-O., Vialard, A. (eds.) DGCI 2002. LNCS, vol. 2301, pp. 81–91. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  4. Hilditch, C.J.: Linear skeletons from square cupboards. In: Meltzer, B., Mitchie, D. (eds.) Machine Intelligence 4, pp. 403–420. Edinburgh University Press (1969)

    Google Scholar 

  5. Klette, G.: Characterizations of simple pixels in binary images. In: Proceedings: Image and Vision Computing New Zealand 2002, Auckland, pp. 227–232 (2002)

    Google Scholar 

  6. Kong, T.Y.: On topology preservation in 2-D and 3-D thinning. International Journal for Pattern recognition and artificial intelligence 9(5), 813–844 (1995)

    Article  Google Scholar 

  7. Lohou, C., Bertrand, G.: A New 3D 6-Subiteration Thinning Algorithm Based on P-Simple Points. In: Braquelaire, A., Lachaud, J.-O., Vialard, A. (eds.) DGCI 2002. LNCS, vol. 2301, pp. 102–113. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  8. Maladain, G., Bertrand, G.: Fast characterization of 3D simple points. In: Proc. 11th IAPR Int. Conf. on Pattern Recognition, The Hague, The Netherlands, vol. III, pp. 232–235 (1992)

    Google Scholar 

  9. Saha, P.K., Chanda, B., Majumder, D.D.: Principles and algorithms for 2D and 3D shrinking, Tech. Rep. TR/KBCS/2/91, NCKBCS Library, Indian Statistical Institute, Calcutta, India (1991)

    Google Scholar 

  10. Rosenfeld, A.: Connectivity in digital pictures. Comm. ACM 17, 146–160 (1970)

    MATH  MathSciNet  Google Scholar 

  11. Rosenfeld, A., Kong, T.Y., Nakamura, A.: Topology- preserving deformations of two-valued digital pictures. Graphical Models and Image Processing 60, 24–34 (1998)

    Article  Google Scholar 

  12. Serra, J.: Image Analysis and Mathematical Morphology, vol. 2. Academic Press, New York (1982)

    MATH  Google Scholar 

  13. Yokoi, S., Toriwaki, J.I., Fukumura, T.: An analysis of topological properties of digitized binary pictures using local features. Computer Graphics and Image Processing 4, 63–73 (1975)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Klette, G. (2003). Simple Points in 2D and 3D Binary Images. In: Petkov, N., Westenberg, M.A. (eds) Computer Analysis of Images and Patterns. CAIP 2003. Lecture Notes in Computer Science, vol 2756. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45179-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45179-2_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40730-0

  • Online ISBN: 978-3-540-45179-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics