Abstract
The notion of a simple point is of fundamental importance for deformations of digital images. A point (pixel or voxel) is simple if the change of its value does not change the topology of the image. This article unifies characterizations of simple points. It shows equivalences of characterizations based on different models that are useful for the design of deformation algorithms (thinning and magnification). The paper also specifies an algorithm for identifying simple voxels.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bertrand, G., Maladain, G.: A new characterization of three-dimensional simple points. Pattern Recognition Letters 15, 169–175 (1994)
Hall, R.W.: Parallel connectivity-preserving thinning algorithms. In: Kong, T.Y., Rosenfeld, A. (eds.) Topological algorithms for Digital Image Processing, pp. 145–179. North-Holland, Amsterdam (1996)
Gau, C.J., Kong, T.Y.: 4D Minimal Non-simple Sets. In: Braquelaire, A., Lachaud, J.-O., Vialard, A. (eds.) DGCI 2002. LNCS, vol. 2301, pp. 81–91. Springer, Heidelberg (2002)
Hilditch, C.J.: Linear skeletons from square cupboards. In: Meltzer, B., Mitchie, D. (eds.) Machine Intelligence 4, pp. 403–420. Edinburgh University Press (1969)
Klette, G.: Characterizations of simple pixels in binary images. In: Proceedings: Image and Vision Computing New Zealand 2002, Auckland, pp. 227–232 (2002)
Kong, T.Y.: On topology preservation in 2-D and 3-D thinning. International Journal for Pattern recognition and artificial intelligence 9(5), 813–844 (1995)
Lohou, C., Bertrand, G.: A New 3D 6-Subiteration Thinning Algorithm Based on P-Simple Points. In: Braquelaire, A., Lachaud, J.-O., Vialard, A. (eds.) DGCI 2002. LNCS, vol. 2301, pp. 102–113. Springer, Heidelberg (2002)
Maladain, G., Bertrand, G.: Fast characterization of 3D simple points. In: Proc. 11th IAPR Int. Conf. on Pattern Recognition, The Hague, The Netherlands, vol. III, pp. 232–235 (1992)
Saha, P.K., Chanda, B., Majumder, D.D.: Principles and algorithms for 2D and 3D shrinking, Tech. Rep. TR/KBCS/2/91, NCKBCS Library, Indian Statistical Institute, Calcutta, India (1991)
Rosenfeld, A.: Connectivity in digital pictures. Comm. ACM 17, 146–160 (1970)
Rosenfeld, A., Kong, T.Y., Nakamura, A.: Topology- preserving deformations of two-valued digital pictures. Graphical Models and Image Processing 60, 24–34 (1998)
Serra, J.: Image Analysis and Mathematical Morphology, vol. 2. Academic Press, New York (1982)
Yokoi, S., Toriwaki, J.I., Fukumura, T.: An analysis of topological properties of digitized binary pictures using local features. Computer Graphics and Image Processing 4, 63–73 (1975)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Klette, G. (2003). Simple Points in 2D and 3D Binary Images. In: Petkov, N., Westenberg, M.A. (eds) Computer Analysis of Images and Patterns. CAIP 2003. Lecture Notes in Computer Science, vol 2756. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45179-2_8
Download citation
DOI: https://doi.org/10.1007/978-3-540-45179-2_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-40730-0
Online ISBN: 978-3-540-45179-2
eBook Packages: Springer Book Archive