Abstract
We discuss the problem of estimating an arbitrary regular parameterized curve and its length from an ordered sample of interpolation points in n-dimensional Euclidean space. The corresponding tabular parameters are assumed to be unknown. In this paper the convergence rates for estimating both curve and its length with cumulative chord piecewise-quartics are established for different types of unparameterized data including ε-uniform samplings. The latter extends previous results on cumulative chord piecewise-quadratics and piecewise-cubics. The numerical experiments carried out for planar and space curves confirm sharpness of the derived asymptotics. A high quality approximation property of piecewise-quartic cumulative chords is also experimentally verified on sporadic data. Our results may be of interest in computer vision (e.g. in edge and range image segmentation or in tracking), digital image processing, computer graphics, approximation and complexity theory or digital and computational geometry.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Barsky, B.A., DeRose, T.D.: Geometric Continuity of Parametric Curves: Three Equivalent Characterizations. IEEE. Comp. Graph. Appl. 9(6), 60–68 (1989)
Bertrand, G., Imiya, A., Klette, R. (eds.): Digital and Image Geometry. LNCS, vol. 2243. Springer, Heidelberg (2001)
Bézier, P.E.: Numerical Control: Mathematics and Applications. John Wiley, New York (1972)
Boehm, W., Farin, G., Kahmann, J.: A Survey of Curve and Surface Methods in CAGD. Comput. Aid. Geom. Des. 1, 1–60 (1988)
de Boor, C., Höllig, K., Sabin, M.: High Accuracy Geometric Hermite Interpolation. Comput. Aided Geom. Design 4, 269–278 (1987)
Bülow, T., Klette, R.: Rubber Band Algorithm for Estimating the Length of Digitized Space-Curves. In: Sneliu, A., Villanva, V.V., Vanrell, M., Alquézar, R. (eds.) Proceedings of 15th International Conference on Pattern Recognition, Barcelona, Spain, vol. III, pp. 551–555. IEEE, Los Alamitos (2000)
Dorst, L., Smeulders, A.W.M.: Discrete Straight Line Segments: Parameters, Primitives and Properties. In: Melter, R., Bhattacharya, P., Rosenfeld, A. (eds.) Ser. Contemp. Maths. Amer. Math. Soc, vol. 119, pp. 45–62 (1991)
Epstein, M.P.: On the Influence of Parametrization in Parametric Interpolation. SIAM. J. Numer. Anal. 13(2), 261–268 (1976)
Hoschek, J.: Intrinsic Parametrization for Approximation. Comput. Aid. Geom. Des. 5, 27–31 (1988)
Klette, R.: Approximation and Representation of 3D Objects. In: Klette, R., Rosenfeld, A., Sloboda, F. (eds.) Advances in Digital and Computational Geometry, pp. 161–194. Springer, Singapore (1998)
Klette, R., Kovalevsky, V., Yip, B.: On the Length Estimation of Digital Curves. In: Latecki, L.J., Melter, R.A., Mount, D.A., Wu, A.Y. (eds.) Proceedings of SPIE Conference, Vision Geometry VIII, Denver, USA. The International Society for Optical Engineering, vol. 3811, pp. 52–63 (1999)
Klette, R., Yip, B.: The Length of Digital Curves. Machine Graphics and Vision 9, 673–703 (2000)
Klette, R., Rosenfeld, A., Sloboda, F. (eds.): Advances in Digital and Computational Geometry, pp. 161–194. Springer, Singapore (1998)
Klingenberg, W.: A Course in Differential Geometry. Springer, Heidelberg (1978)
Kozera, R.: Cumulative Chord Piecewise-Quartics (submitted)
Kozera, R., Noakes, L., Klette, R.: External versus Internal Parameterizations for Lengths of Curves with Nonuniform Samplings. In: Asano, T., Klette, R., Ronse, C. (eds.) Geometry, Morphology, and Computational Imaging. LNCS, vol. 2616, pp. 403–418. Springer, Heidelberg (2003)
Kvasov, B.I.: Method of Shape-Preserving Spline Approximation. World Scientific Pub. Co, Singapore (2000)
Lachance, M.A., Schwartz, A.J.: Four Point Parabolic Interpolation. Comput. Aided Geom. Design 8, 143–149 (1991)
Lee, E.T.Y.: Corners, Cusps, and Parameterization: Variations on a Theorem of Epstein. SIAM J. Numer. Anal. 29, 553–565 (1992)
Moran, P.: Measuring the Length of a Curve. Biometrika 53(3/4), 359–364 (1966)
Mørken, K., Scherer, K.: A General Framework for High-accuracy Parametric Interpolation. Maths Comput 66(217), 237–260 (1997)
Noakes, L., Kozera, R.: More-or-Less Uniform Sampling and Lengths of Curves. Quart. Appl. Maths (in press)
Noakes, L., Kozera, R.: Interpolating Sporadic Data. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2351, pp. 613–625. Springer, Heidelberg (2002)
Noakes, L., Kozera, R.: Cumulative Chords and Piecewise-Quadratics. In: Proceedings of International Conference on Computer Vision and Graphics, Zakopane, Poland, vol. 2, pp. 589–595 (2002)
Noakes, L., Kozera, R.: Cumulative Chords, Piecewise-Quadratics and Piecewise-Cubics (submitted)
Noakes, L., Kozera, R., Klette, R.: Length Estimation for Curves with Different Samplings. In: Bertrand, G., Imiya, A., Klette, R. (eds.) Digital and Image Geometry. LNCS, vol. 2243, pp. 339–351. Springer, Heidelberg (2002)
Noakes, L., Kozera, R., Klette, R.: Length Estimation for Curves with ε-Uniform Sampling. In: Skarbek, W. (ed.) CAIP 2001. LNCS, vol. 2124, pp. 518–526. Springer, Heidelberg (2001)
Piegl, L., Tiller, W.: The NURBS Book. Springer, Heidelberg (1997)
Rababah, A.: High Order Approximation Methods for Curves. Computer Aided Geom. Design 12, 89–102 (1995)
Ralston, A.: A First Course in Numerical Analysis. McGraw-Hill, New York (1965)
Schaback, R.: Optimal Geometric Hermite Interpolation of Curves. In: Dæhlen, M., Lyche, T., Schumaker, L. (eds.) Mathematical Methods for Curves and Surfaces II, pp. 1–12. Vanderbilt University Press (1998)
Sederberg, T.W., Zhao, J., Zundel, A.K.: Approximate Parametrization of Algebraic Curves. In: Strasser, W., Seidel, H.P. (eds.) Theory and Practice in Geometric Modelling, pp. 33–54. Springer, Berlin (1989)
Sloboda, F., Zaťko, B., Stör, J.: On Approximation of Planar One-Dimensional Continua. In: Klette, R., Rosenfeld, A., Sloboda, F. (eds.) Advances in Digital and Computational Geometry, pp. 113–160. Springer, Singapore (1998)
Taubin, T.: Estimation of Planar Curves, Surfaces, and Nonplanar Space Curves Defined by Implicit Equations with Applications to Edge and Range Image Segmentation. IEEE Trans. Patt. Mach. Intell. 13(11), 1115–1138 (1991)
Traub, J.F., Werschulz, A.G.: Complexity and Information. Cambridge Uni. Press, Cambridge (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kozera, R. (2003). Cumulative Chord Piecewise-Quartics for Length and Curve Estimation. In: Petkov, N., Westenberg, M.A. (eds) Computer Analysis of Images and Patterns. CAIP 2003. Lecture Notes in Computer Science, vol 2756. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45179-2_85
Download citation
DOI: https://doi.org/10.1007/978-3-540-45179-2_85
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-40730-0
Online ISBN: 978-3-540-45179-2
eBook Packages: Springer Book Archive