Abstract
A surprisingly rich variety of tools has been developed for interpolating camera orientations, including traditional methods based on charts, corner-cutting schemes from computer graphics, and Riemannian cubic interpolants. Piecewise geodesic and generalized deCastlejau interpolants are described in sufficient detail to permit implementation. Experimental comparisons are made between generalized deCastlejau curves and Riemannian cubics.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ahlberg, J.H., Nilson, E.N., Walsh, J.H.: The Theory of Splines and Their Applications. Mathematics in Science and Engineering, vol. 38. Academic Press, London (1967)
Angeles, J., Akras, R.: Cartesian Trajectory Planning for 3-DOF Spherical Wrists. In: IEEE Conference on Robotics and Automation, Scottsdale, AZ, May 1989, pp. 68–74 (1989)
Barr, A.H., Currin, B., Gabriel, S., Hughes, J.F.: Smooth Interpolation of Orientations with Angular Velocity Constraints Using Quaternions. Computer Graphics 26(2), 313–320 (1992)
Brady, J.M., Hollerbach, J.M., Johnson, T.L., Lozano-Perez, T., Masson, M.T.: Robot Motion: Planning and Control. MIT Press, Cambridge (1982)
Camarinha, M., Silva Leite, F., Crouch, P.: On the Geometry of Riemannian Cubic Polynomials. Differential Geom. Appl. 15(2), 107–135 (2001)
Camarinha, M., Silva Leite, F., Crouch, P.: Splines of Class C k on Non-Euclidean Spaces. IMA J. Math. Control & Information 12(4), 399–410 (1995)
Chapman, P.B., Noakes, L.: Singular Perturbations and Interpolation - a Problem in Robotics. Nonlinear Analysis TMA 16(10), 849–859 (1991)
Crouch, P., Silva Leite, F.: The Dynamic Interpolation Problem: on Riemannian Manifolds, Lie Groups, and Symmetric Spaces. J. Dynam. Control Systems 1(2), 177–202 (1995)
Crouch, P., Kun, G., Silva Leite, F.: The De Castlejau Algorithm on Lie Groups and Spheres. J. Dynam. Control Systems 5(3), 397–429 (1999)
Duff, T.: Quaternion Splines for Animating Rotations. In: Second Summer Graphics Workshop, Monterey, CA, December 12-13, pp. 54–62 (1985) (Usenix Association)
Gabriel, S.A., Kajiya, J.T.: Spline Interpolation in Curved Manifolds (1985) (unpublished manuscript)
Goldman, R.N.: Recursive Triangles. In: Dahmen, W., Gasca, M., Micchelli, C.A. (eds.) Computations of Curves and Surfaces. NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci, vol. 307, pp. 27–72. Kluwer, Dordrecht (1989)
Jost, J.: Riemannian Geometry and Geometrical Analysis. Springer, Heidelberg (1995)
Keller, H.B.: Numerical Methods for Two-Point Boundary-Value Problems. Blaisdell, Waltham Mass (1968)
Krakowski, K.: PhD Thesis, University of Western Australia (submitted 2002)
Silva Leite, F., Camarinha, M., Crouch, P.: Elastic Curves as Solutions of Riemannian and Sub-Riemannian Control Problems. Math. Control Signals Systems 13(2), 140–155 (2000)
Milnor, J.: Morse Theory. Annals of Math Studies, vol. 51. Princeton UP, Princeton (1963)
Noakes, L.: Asymptotically Smooth Splines. World Scientific Series in Approximations and Decompositions, vol. 4, pp. 131–137 (1994)
Noakes, L.: Riemannian Quadratics. In: Le Méhauté, A., Rabut, C., Schumaker, L.L. (eds.) Curves and Surfaces with Applications in CAGD, vol. 1, pp. 319–328. Vanderbilt University Press (1997)
Noakes, L.: Nonlinear Corner-Cutting. Advances in Computational Math. 8, 165–177 (1998)
Noakes, L.: Accelerations of Riemannian Quadratics. Proc. Amer. Math. Soc. 127, 1827–1836 (1999)
Noakes, L.: Quadratic Interpolation on Spheres. Advances in Computational Math. (in-press)
Noakes, L., Heinzinger, G., Paden, B.: Cubic Splines on Curved Spaces. J. Math. Control & Information 6, 465–473 (1989)
Noakes, L.: Null Cubics and Lie Quadratics. J. Math. Physics (in-press)
Paul, R.P.: Manipulator Path Control. IEEE Trans. Syst. Man. Cybern. SMC-9, 702–711 (1979)
Shoemake, K.: Animating Rotation with Quaternion Curves. SIGGRAPH 19(3), 245–254 (1985)
Tan, H.H., Potts, R.B.: A Discrete Path/Trajectory Planner for Robotic Arms. J. Austral. Math. Soc. Series B 31, 1–28 (1989)
Taylor, R.H.: Planning and Execution of Straight-Line Manipulator Trajectories. IBM J. Res. Develop. 23, 424–436 (1979)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Noakes, L. (2003). Interpolating Camera Configurations. In: Petkov, N., Westenberg, M.A. (eds) Computer Analysis of Images and Patterns. CAIP 2003. Lecture Notes in Computer Science, vol 2756. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45179-2_87
Download citation
DOI: https://doi.org/10.1007/978-3-540-45179-2_87
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-40730-0
Online ISBN: 978-3-540-45179-2
eBook Packages: Springer Book Archive