Skip to main content

Interpolating Camera Configurations

  • Conference paper
Computer Analysis of Images and Patterns (CAIP 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2756))

Included in the following conference series:

Abstract

A surprisingly rich variety of tools has been developed for interpolating camera orientations, including traditional methods based on charts, corner-cutting schemes from computer graphics, and Riemannian cubic interpolants. Piecewise geodesic and generalized deCastlejau interpolants are described in sufficient detail to permit implementation. Experimental comparisons are made between generalized deCastlejau curves and Riemannian cubics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ahlberg, J.H., Nilson, E.N., Walsh, J.H.: The Theory of Splines and Their Applications. Mathematics in Science and Engineering, vol. 38. Academic Press, London (1967)

    Book  MATH  Google Scholar 

  2. Angeles, J., Akras, R.: Cartesian Trajectory Planning for 3-DOF Spherical Wrists. In: IEEE Conference on Robotics and Automation, Scottsdale, AZ, May 1989, pp. 68–74 (1989)

    Google Scholar 

  3. Barr, A.H., Currin, B., Gabriel, S., Hughes, J.F.: Smooth Interpolation of Orientations with Angular Velocity Constraints Using Quaternions. Computer Graphics 26(2), 313–320 (1992)

    Article  Google Scholar 

  4. Brady, J.M., Hollerbach, J.M., Johnson, T.L., Lozano-Perez, T., Masson, M.T.: Robot Motion: Planning and Control. MIT Press, Cambridge (1982)

    Google Scholar 

  5. Camarinha, M., Silva Leite, F., Crouch, P.: On the Geometry of Riemannian Cubic Polynomials. Differential Geom. Appl. 15(2), 107–135 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  6. Camarinha, M., Silva Leite, F., Crouch, P.: Splines of Class C k on Non-Euclidean Spaces. IMA J. Math. Control & Information 12(4), 399–410 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chapman, P.B., Noakes, L.: Singular Perturbations and Interpolation - a Problem in Robotics. Nonlinear Analysis TMA 16(10), 849–859 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  8. Crouch, P., Silva Leite, F.: The Dynamic Interpolation Problem: on Riemannian Manifolds, Lie Groups, and Symmetric Spaces. J. Dynam. Control Systems 1(2), 177–202 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  9. Crouch, P., Kun, G., Silva Leite, F.: The De Castlejau Algorithm on Lie Groups and Spheres. J. Dynam. Control Systems 5(3), 397–429 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  10. Duff, T.: Quaternion Splines for Animating Rotations. In: Second Summer Graphics Workshop, Monterey, CA, December 12-13, pp. 54–62 (1985) (Usenix Association)

    Google Scholar 

  11. Gabriel, S.A., Kajiya, J.T.: Spline Interpolation in Curved Manifolds (1985) (unpublished manuscript)

    Google Scholar 

  12. Goldman, R.N.: Recursive Triangles. In: Dahmen, W., Gasca, M., Micchelli, C.A. (eds.) Computations of Curves and Surfaces. NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci, vol. 307, pp. 27–72. Kluwer, Dordrecht (1989)

    Google Scholar 

  13. Jost, J.: Riemannian Geometry and Geometrical Analysis. Springer, Heidelberg (1995)

    Google Scholar 

  14. Keller, H.B.: Numerical Methods for Two-Point Boundary-Value Problems. Blaisdell, Waltham Mass (1968)

    MATH  Google Scholar 

  15. Krakowski, K.: PhD Thesis, University of Western Australia (submitted 2002)

    Google Scholar 

  16. Silva Leite, F., Camarinha, M., Crouch, P.: Elastic Curves as Solutions of Riemannian and Sub-Riemannian Control Problems. Math. Control Signals Systems 13(2), 140–155 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  17. Milnor, J.: Morse Theory. Annals of Math Studies, vol. 51. Princeton UP, Princeton (1963)

    MATH  Google Scholar 

  18. Noakes, L.: Asymptotically Smooth Splines. World Scientific Series in Approximations and Decompositions, vol. 4, pp. 131–137 (1994)

    Google Scholar 

  19. Noakes, L.: Riemannian Quadratics. In: Le Méhauté, A., Rabut, C., Schumaker, L.L. (eds.) Curves and Surfaces with Applications in CAGD, vol. 1, pp. 319–328. Vanderbilt University Press (1997)

    Google Scholar 

  20. Noakes, L.: Nonlinear Corner-Cutting. Advances in Computational Math. 8, 165–177 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  21. Noakes, L.: Accelerations of Riemannian Quadratics. Proc. Amer. Math. Soc. 127, 1827–1836 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  22. Noakes, L.: Quadratic Interpolation on Spheres. Advances in Computational Math. (in-press)

    Google Scholar 

  23. Noakes, L., Heinzinger, G., Paden, B.: Cubic Splines on Curved Spaces. J. Math. Control & Information 6, 465–473 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  24. Noakes, L.: Null Cubics and Lie Quadratics. J. Math. Physics (in-press)

    Google Scholar 

  25. Paul, R.P.: Manipulator Path Control. IEEE Trans. Syst. Man. Cybern. SMC-9, 702–711 (1979)

    Article  Google Scholar 

  26. Shoemake, K.: Animating Rotation with Quaternion Curves. SIGGRAPH 19(3), 245–254 (1985)

    Article  Google Scholar 

  27. Tan, H.H., Potts, R.B.: A Discrete Path/Trajectory Planner for Robotic Arms. J. Austral. Math. Soc. Series B 31, 1–28 (1989)

    Google Scholar 

  28. Taylor, R.H.: Planning and Execution of Straight-Line Manipulator Trajectories. IBM J. Res. Develop. 23, 424–436 (1979)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Noakes, L. (2003). Interpolating Camera Configurations. In: Petkov, N., Westenberg, M.A. (eds) Computer Analysis of Images and Patterns. CAIP 2003. Lecture Notes in Computer Science, vol 2756. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45179-2_87

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45179-2_87

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40730-0

  • Online ISBN: 978-3-540-45179-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics