Skip to main content

Linear Forwarders

  • Conference paper
CONCUR 2003 - Concurrency Theory (CONCUR 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2761))

Included in the following conference series:

  • 449 Accesses

Abstract

A linear forwarder is a process which receives one message on a channel and sends it on a different channel. Such a process allows for a simple implementation of the asynchronous pi calculus, by means of a direct encoding of the pi calculus’ input capability (that is, where a received name is used as the subject of subsequent input). This encoding is fully abstract with respect to barbed congruence.

Linear forwarders are actually the basic mechanism of an earlier implementation of the pi calculus called the fusion machine. We modify the fusion machine, replacing fusions by forwarders. The result is more robust in the presence of failures, and more fundamental.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abadi, M., Fournet, C.: Mobile values, new names, and secure communication. In: POPL 2001, pp. 104–115. ACM Press, New York (2001)

    Chapter  Google Scholar 

  2. Amadio, R., Boudol, G., Lhoussaine, C.: The receptive distributed pi-calculus. In: Pandu Rangan, C., Raman, V., Sarukkai, S. (eds.) FST TCS 1999. LNCS, vol. 1738, pp. 304–315. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  3. Amadio, R.: An asynchronous model of locality, failure, and process mobility. In: Garlan, D., Le Métayer, D. (eds.) COORDINATION 1997. LNCS, vol. 1282, pp. 374–391. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  4. Boreale, M.: On the expressiveness of internal mobility in name-passing calculi. Theoretical Computer Science 195(2), 205–226 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  5. Boudol, G.: Asynchrony and the π-calculus (note). Rapport de Recherche 1702, INRIA Sophia-Antipolis (1992)

    Google Scholar 

  6. Cardelli, L., Gordon, A.D.: Mobile ambients. Theoretical Computer Science 240(1), 177–213 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  7. Fournet, C., Gonthier, G.: The reflexive chemical abstract machine and the join-calculus. In: POPL 1996, pp. 372–385. ACM Press, New York (1996)

    Chapter  Google Scholar 

  8. Gardner, P., Laneve, C., Wischik, L.: The fusion machine. In: Brim, L., Jančar, P., Křetínský, M., Kucera, A. (eds.) CONCUR 2002. LNCS, vol. 2421, pp. 418–433. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  9. Gelernter, D., Carriero, N., Chandran, S., Chang, S.: Parallel programming in Linda. In: ICPP 1985, pp. 255–263. IEEE, Los Alamitos (1985)

    Google Scholar 

  10. Giacalone, A., Mishra, P., Prasad, S.: Facile: A symmetric integration of concurrent and functional programming. International Journal of Parallel Programming 18(2), 121–160 (1989)

    Article  Google Scholar 

  11. Honda, K., Yoshida, N.: On reduction-based process semantics. Theoretical Computer Science 152(2), 437–486 (1995)

    Article  MathSciNet  Google Scholar 

  12. Kobayashi, N., Pierce, B.C., Turner, D.N.: Linearity and the pi-calculus. ACM Transactions on Programming Languages and Systems 21(5), 914–947 (1999)

    Article  Google Scholar 

  13. Merro, M., Sangiorgi, D.: On asynchrony in name-passing calculi. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 856–867. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  14. Merro, M.: On equators in asynchronous name-passing calculi without matching. In: EXPRESS 1999. Electronic Notes in Theoretical Computer Science, vol. 27. Elsevier Science Publishers, Amsterdam (1999)

    Google Scholar 

  15. Milner, R., Sangiorgi, D.: Barbed bisimulation. In: Kuich, W. (ed.) ICALP 1992. LNCS, vol. 623, pp. 685–695. Springer, Heidelberg (1992)

    Google Scholar 

  16. Parrow, J., Sjödin, P.: Multiway synchronization verified with coupled simulation. In: Cleaveland, W.R. (ed.) CONCUR 1992. LNCS, vol. 630, pp. 518–533. Springer, Heidelberg (1992)

    Chapter  Google Scholar 

  17. Sangiorgi, D.: Pi-calculus, internal mobility and agent-passing calculi. Theoretical Computer Science 167(1–2), 235–275 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  18. Sangiorgi, D.: On the bisimulation proof method. Mathematical Structures in Computer Science 8(5), 447–479 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  19. Sewell, P., Wojciechowski, P., Pierce, B.: Location independence for mobile agents. In: Bal, H.E., Cardelli, L., Belkhouche, B. (eds.) ICCL-WS 1998. LNCS, vol. 1686, pp. 1–31. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gardner, P., Laneve, C., Wischik, L. (2003). Linear Forwarders. In: Amadio, R., Lugiez, D. (eds) CONCUR 2003 - Concurrency Theory. CONCUR 2003. Lecture Notes in Computer Science, vol 2761. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45187-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45187-7_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40753-9

  • Online ISBN: 978-3-540-45187-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics