Abstract
We study the Lovász number ϑ along with two further SDP relaxations ϑ 1/2, ϑ 2 of the independence number and the corresponding relaxations \(\bar\vartheta\), \(\bar\vartheta_{1/2}\), \(\bar\vartheta_2\) of the chromatic number on random graphs G n, p . We prove that \(\bar\vartheta,\bar\vartheta_{1/2},\bar\vartheta_2(G_{n,p})\) in the case p<n − 1/2 − ε are concentrated in intervals of constant length. Moreover, we estimate the probable value of \(\vartheta,\bar\vartheta(G_{n,p})\) etc. for essentially the entire range of edge probabilities p. As applications, we give improved algorithms for approximating α(G n, p ) and for deciding k-colorability in polynomial expected time.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alon, N., Kahale, N.: A spectral technique for coloring random 3-colorable graphs. SIAM J. Comput. 26, 1733–1748 (1997)
Alon, N., Krivelevich, M.: The concentration of the chromatic number of random graphs. Combinatorica 17, 303–313
Charikar, M.: On semidefinite programming relaxations for graph coloring and vertex cover. In: Proc. 13th SODA, pp. 616–620 (2002)
Coja-Oghlan, A., Taraz, A.: Exact and approximative algorithms for colouring G(n, p) (preprint), available from http://www.informatik.hu-berlin.de/~coja/ ; A preliminary version has appeard in Proc. 20th STACS (2003), pp. 487–498 (2003)
Coja-Oghlan, A.: Finding large independent sets in polynomial expected time. In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 511–522. Springer, Heidelberg (2003)
Coja-Oghlan, A., Moore, C., Sanwalani, V.: MAX k-CUT and approximating the chromatic number of random graphs, available from http://www.informatik.huberlin.de/~coja/ ; An extended abstract version has appeared in Proc. ICALP 2003 (2003)
Feige, U.: Randomized graph products, chromatic numbers, and the Lovász theta function. Combinatorica 17(1), 79–90
Feige, U., Kilian, J.: Heuristics for semirandom graph problems. J. Comput. and System Sci. 63, 639–671 (2001)
Feige, U., Kilian, J.: Zero knowledge and the chromatic number. In: Proc. 11th IEEE Conf. Comput. Complexity, pp. 278–287 (1996)
Feige, U., Ofek, E.: Spectral techniques applied to sparse random graphs, report MCS03-01, Weizmann Institute (2003), available from http://www.wisdom.weizmann.ac.il/math/research.shtml
Friedman, J., Kahn, J., Szemeredi, E.: On the second eigenvalue in random regular graphs. In: Proc. 21st STOC, pp. 587–598 (1989)
Frieze, A., McDiarmid, C.: Algorithmic theory of random graphs. Random Structures & Algorithms 10, 5–42 (1997)
Füredi, Z., Komloś, J.: The eigenvalues of random symmetric matrices. Combinatorica 1, 233–241 (1981)
Goemans, M.X., Kleinberg, J.: The Lovasz theta function and a semidefinite programming relaxation of vertex cover. SIAM J. on Discrete Math. 11, 1–48 (1998)
Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for maximum cut and satisfyability problems using semidefinite programming. J. ACM 42, 1115–1145 (1995)
Grötschel, M., Lovász, L., Schrijver, A.: Geometric algorithms and combinatorial optimization. Springer, Heidelberg (1988)
Håstad, J.: Clique is hard to approximate within n1 − ε. In: Proc. 37th FOCS, pp. 627–636 (1996)
Janson, S., Łuczak, T., Ruciński, A.: Random Graphs. Wiley, Chichester (2000)
Juhász, F.: The asymptotic behaviour of Lovász ϑ function for random graphs. Combinatorica 2, 269–270 (1982)
Karger, D., Motwani, R., Sudan, M.: Approximate graph coloring by semidefinite programming. J. ACM 45, 246–265 (1998)
Knuth, D.: The sandwich theorem. Electron. J. Combin. 1 (1994)
Krivelevich, M.: Deciding k-colorability in expected polynomial time. Information Processing Letters 81, 1–6 (2002)
Krivelevich, M., Vu, V.H.: Approximating the independence number and the chromatic number in expected polynomial time. J. of Combinatorial Optimization 6, 143–155 (2002)
Lawler, E.L.: A note on the complexity of the chromatic number problem. Information Processing Letters 5, 66–67 (1976)
Łuczak, T.: A note on the sharp concentration of the chromatic number of random graphs. Combinatorica 11, 45–54 (1991)
Shamir, E., Spencer, J.: Sharp concentration of the chromatic number of random graphs G n,p . Combinatorica 7, 121–129 (1987)
Szegedy, M.: A note on the θ number of Lovász and the generalized Delsarte bound. In: Proc. 35th FOCS, pp. 36–39 (1994)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Coja-Oghlan, A. (2003). The Lovász Number of Random Graphs. In: Arora, S., Jansen, K., Rolim, J.D.P., Sahai, A. (eds) Approximation, Randomization, and Combinatorial Optimization.. Algorithms and Techniques. RANDOM APPROX 2003 2003. Lecture Notes in Computer Science, vol 2764. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45198-3_20
Download citation
DOI: https://doi.org/10.1007/978-3-540-45198-3_20
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-40770-6
Online ISBN: 978-3-540-45198-3
eBook Packages: Springer Book Archive